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Abstract

PERCUTANEOUS nephrolithotomy (PCNL) is a procedure to remove kidney

stones through an incision in the patient’s back. Gaining kidney access is the

most challenging task in this procedure and the cause of many complications.

This thesis presents semi-autonomous solutions for improving PCNL procedure out-

comes. First, a cyber-physical PCNL simulator incorporating haptic feedback and

simplifying surgeon mental workload via teleoperation of a nephroscope, the surgeon

controls the tooltip position while a robotic agent controls its orientation.

This thesis then explores how subtask automation can further improve the proce-

dure. A multi-objective path planning algorithm is implemented to generate multiple

suitable paths for kidney access, from which an expert surgeon selects one for execu-

tion. The robotic agent then steers the tool along the path autonomously. A further

advancement adds a tool/tissue interaction model which determines tool bending;

thereby providing accurate trajectory tracking. The concepts are validated experi-

mentally in ex-vivo and phantom tissues.

Keywords: robotic surgery, cyber-physical simulator, semi-autonomous,

tool bending, percutaneous nephrolithotomy, path planning, haptic feed-

back
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ẋ velocity vector of the tooltip and constrained point

Θ̇ vector containing the angular velocities of the joints

Θ initial joint angles

J the Jacobian constructed based on tooltip and constrained point ve-

locity equations

θui maximum joint angle of joint i

θ`i minimum joint angle of joint i

υi(θi) joint i remapped onto the tangent function

ϑi(υi) remapped joint i when returned to the joint space

Jc(υ) the constrained Jacobian matrix

J†(υ) the pseudo-inverse of J(υ)

I an identity matrix

µ a scalar damping constant, it has a small positive value

υd the inverse kinematics solution, a desired set of joint angles

xd desired tooltip and constrained point coordinates

ε error between desired tooltip and constrained point locations and

their actual locations

N total number of demonstration data points

ξd the set of all demonstration data points

ξnd demonstration data point n

ξ data points comprising the potential field workspace

k total number of data points used to define the potential field

xiv



φni (ξ) potential energy field based on demonstration point n

φn0 initial potential energy for point n

Sn stiffness of potential energy field for point n

ξi the ith data point in ξ

ωni (ξ) weighting element for data point n

σn the smoothing parameter for data point n

Φ(ξ) weighted sum of all individual potential field elements

ψn(ξ̇) damping field for data point n

Dn dissipative gain for data point n

ξ̇ first time derivative of ξ

Ψ(ξ, ξ̇) weighted sum of all dissipative elements

F haptic feedback force

∇ gradient operator

ξmt tooltip data point m from an experimental trial

ttot total time to complete the task

M total data points for an experimental trial

ξL path length

νm tooltip velocity at point m

δt time step between data points

νµ average tooltip velocity

am tooltip acceleration at point m

aµ average tooltip acceleration

ξI idealized user trajectory

εm deviation of point m from idealized trajectory

εµ average deviation from ideal trajectory

ξc Cartesian coordinates for the phantom kidney stone

TA targeting accuracy

Symbols in Chapter 3

Ni,j basis function for B-spline curve

xv



d degree of the B-spline

m+ 1 size of the knot vector

n+ 1 number of anchor points

t knot vector

ti knot i in the knot vector

C(t) B-spline curve

Pi anchor point i

q number of internal knots

D dimension

f1, f2, f3, f4 cost functions

a, b starting point and ending point of curve

T matrix containing finite element coordinates of the phantom kidney

CR(j) resampled B-spline curve

` number of points in CR(j)

L tool length

CRT (j, i) coordinates of the discretized tool shaft

z a displacement along the tool shaft

K tissue stiffness

s(z) displacement of the tool from the original entry path

U(d) tissue compression potential energy

θ angular offset of the tool

xt x coordinate of the tool-base (robot end-effector)

xOP (z) a function describing the x coordinate of the original entry path at

the displacement z along the tool axis

z1, z2 displacement of the tissue entry point and exit point along the tool

axis

np1, np2 parent population members

nc1, nc2 child population members

B value determines crossover between to parent population members

δl, δr values determine the mutation of a child member

xvi



µc, µm randomly generated crossover and mutation values

ζc, ζm crossover and mutation factors

nUB, nLB parameter upper and lower bounds

f̃(n) normalized objective function

Rk dimensional vector

s1(n), s2(n) euclidean and normal distances for the population

Symbols in Chapter 4

z a displacement along the tool shaft

ν displacement of the tool

n maximum number of vibration modes being considered

qi(z) vibration mode i

gi(d) modal coordinate i

γi constant used in bending formulation

βi constants for a cantilever beam with one fixed and one free end

L tool length

Π(d) total energy in the system

Ud(d) potential energy stored in the tool due to bending

Ut(d) tissue compression potential energy

EI(z) flexural rigidity

Es, Etool Young’s modulus of elasticity of the sheath and tool

Is, Itool second moment of inertia for the sheath and the tool

P t coordinates of a point given relative to the tool reference frame

P 0 coordinates of a point given relative to the base reference frame

θ1 orientation of the end-effector

θ2 mounting angle of the tool to the end-effector

K tissue stiffness

s(d, z) displacement of the tool from the original entry path

θ angular offset of the tool

xt x coordinate of the tool-base (robot end-effector)

xvii



xOP (z) a function describing the x coordinate of the original entry path at

the displacement z along the tool axis

z1, z2 displacement of the tissue entry point and exit point along the tool

axis

φij, ωij, ψi placeholder variables for tool bending energy and tissue compression

equilibrium energy components

M matrix of the energy equilibrium equations

µij equation for a single entry in matrix M

f1, f2, f3, f4 cost functions

P 0
G(i) reference position

P 0
E(i) tooltip position

P 0
t robot end-effector position

xviii



Chapter 1

Advances in Semi-Autonomous

Percutaneous Nephrolithotomy
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NEPHROLITHIASIS also known as kidney stones or urinary calculi are a com-

mon ailment around the world, affecting between 1.7 to 14.8 % members of

any given population [1–4]. Kidney stones are formed in the kidneys from mineral

build-up, primarily calcium and other minerals [1, 4, 5]. A depiction of the renal fil-

tration system and mineral deposits is given in Fig. 1.1. While many small kidney

stones can pass down the urinary tract with little to no discomfort, larger kidney

stones cause intense discomfort and pose a risk of blocking urine flow. In these cases,

medical interventions are required [1, 6]. A variety of treatment options are available

for kidney stones, they range from non-invasive to minimally invasive [1]. Although

open surgical lithotomy was used in the past for kidney stone management, this has

been made obsolete through the adoption of less invasive solutions [1].

A patient suspected of having a kidney stone undergoes imaging to confirm the diag-

nosis; ultrasonography (US) and computed tomography (CT) scans are both common

imaging tools used for this purpose [1, 7, 8]. X-rays and MRI have also been used as

imaging methods for diagnostics and determining the stone sizes, although they are

not used as frequently as US and CT imaging modalities. US imaging passes acoustic

waves through a patient’s tissue. The waves are reflected by parts of the tissue and

the US probe measures the reflected response to generate an image [7]. US is afford-

able and free from ionizing radiation but it is not effective for accurately diagnosing

and estimating stone size, which often leads to smaller kidney stones not being identi-

fied, or an overestimation in stone size [1,5,7,8]. Non-contrast computed tomography

(NCCT) is identified as a gold standard for diagnosing kidney stones [5,7,8]. During

a CT scan, an x-ray reflective contrast agent is injected into a patient while x-ray

images are taken from several angles to provide detailed images of internal anatomy.

The contrast agent permeates soft tissues through the vascular system, making them

more visible on the NCCT scan. However, in NCCT the contrast is not injected since

the goal is primarily to image kidney stones that do not benefit from the contrast and

can be obscured by it [7, 8]. NCCT provides clearer images with more details com-

pared to US, although it is generally more expensive and exposes patients to ionizing

radiation [1, 5, 7, 8].
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Figure 1.1: Kidney anatomy and filtering system. The general kidney anatomy is shown on
the left with the location of kidney poles identified. Two mechanisms are shown for possible
kidney stone formation: in (a) the calcium phosphate is deposited into the interstitium,
once it reaches the papillary surface, calcium oxalate deposits in the urine continue to grow
the stone. In (b), calcium oxalate deposits can plug the renal tubules and begin to form a
stone. 1

Prior to the use of a stone-removal procedure, medical imaging is used to determine

the size, shape, and location of the kidney stones, which assists in determining the

appropriate treatment option. The treatment option used for each patient then de-

pends on the size and location of the urinary calculi. The three most commonly used

treatment options are shockwave lithotripsy (SWL), ureteroscopic fragmentation and

retrieval, and percutaneous nephrolithotomy (PCNL) [1, 5]. Individual practitioners

use their discretion to determine the correct treatment for each scenario.

1.1 Kidney Stone Treatment Options

The most commonly used treatment option is SWL, making up approximately 40% to

50% of medical interventions for kidney stones worldwide since the majority of stones
1Reprinted by permission from Springer Nature, Nature Reviews Disease Primers, Saeed R. Khan

et al [1] © Macmillan Publishers Limited 2016.
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are relatively small [1]. Shockwave lithotripsy is the use of a high-energy acoustic

wave that is powerful enough to break-up the kidney stones. The stone fragments are

then passed naturally or SWL is combined with ureteroscopic removal. Guidelines

indicate that this treatment is appropriate for stones in the lower pole of the kidney

(see Fig. 1.1 for what region of kidney makes up the lower pole) and less than 15 mm

in size or for stones in the upper or middle poles if they are less than 20 mm [1, 5].

Imaging modalities like ultrasound or fluoroscopy are commonly used during SWL to

determine the precise locations of each stone so they may be accurately targeted with

the acoustic wave.

Ureteroscopic interventions are also frequently applied treatment methods, with oc-

currences of roughly 30% to 40% worldwide, they are generally applied to larger

kidney stones [1]. These procedures involve inserting an endoscope through the ure-

thra and guiding it inside the kidney to gain access to the stones and potentially

provide additional tools or other assistance in stone retrieval or removal [1, 5]. These

intervention methods are often used consecutively with other interventions such as

shockwave lithotripsy and PCNL.

Percutaneous nephrolithotomy is the leading intervention for large kidney stones (usu-

ally greater than 20 mm), irregularly shaped ones (like staghorn calculi), or when other

intervention methods have failed [1, 5, 9, 10]. It is also a procedure frequently used

when a patient has anatomical abnormalities that make alternative treatment options

nonviable [9]. Since PCNL is a more invasive treatment option for more serious or

complicated instances of kidney stones, it is not practiced as frequently as SWL or

ureteroscopy; it is the treatment option used in 5% to 10% of renal calculi cases [1].

This minimally invasive procedure involves making a small incision in a patient’s back,

see Fig. 1.2(a), the exact location of the incision depends on the locations of the kidney

stones although it is more common to enter the lower pole of a kidney [1,9]. A needle

is inserted into the incision to puncture the kidney and enter the renal pelvis through

a calyx, see Fig. 1.2(b). This is referred to as the puncture step and is considered

the most challenging and critical component of PCNL [9]. 2D imaging modalities are
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(a) The incision is made in the patient’s back. 1 (b) A needle is inserted through the puncture. 1

(c) The guide wire is used to guide the dilator as
it is inserted to expand the entry path into the
kidney, a sheath is then inserted.2

(d) The nephroscope is inserted through the
sheath into the kidney, tools are inserted through
the nephroscope.3

Figure 1.2: Basic steps for performing PCNL, beginning with the incision and puncture,
followed by guide wire insertion and dilation of the entry path and inserting a sheath. With
the sheath inserted stone fragmentation and removal occurs.

used to correctly align the tool for the puncture and to execute it, ultrasound and

fluoroscopy are the two widely accepted imaging methods for PCNL [1]. Due to the

challenging nature of gaining kidney access, it is one of the most common causes of

injury and excessive bleeding during PCNL [11,12].

Once access to the kidney has been established, a guidewire is inserted through the

entry path and into the ureter, see Fig. 1.2(c) [9, 11]. With the guidewire in place, a

dilator is used to expand the entry path into the kidney, it needs to be expanded to
1Reprinted by permission from Springer Nature, Percutaneous Nephrostomy, David Webb [13] ©

Springer International Publishing Switzerland 2016. Cropped slightly from originals.
2Reprinted by permission from Springer Nature, Routine PCNL, David Webb [14] © Springer

International Publishing Switzerland 2016. Cropped slightly from original.
3Reprinted by permission from Springer Nature, Positioning During PNL, András Hozenk [15] ©

Springer International Publishing Switzerland 2020.
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create room for larger tools and a sheath. Once the path has been expanded with the

dilator, a sheath is put in place to maintain this opening and the dilator is removed.

The nephroscope can now be inserted through the sheath [14], Fig. 1.2(d). The

nephroscope can now navigate within the kidney to reach various kidney stones.

The next step in the procedure is to break-up and remove the kidney stones. Some-

times stones are small enough that they can be removed directly, although most

must be fragmented prior to removal [16]. Shockwaves are used to fragment the

stones within the kidney similar to SWL, generally ultrasonic lithotripsy is used for

stone fragmentation, although pneumatic or laser stone fragmentation methods are

sometimes necessary for particularly hard calculi [9]. While the stones are being

fragmented, the kidney is irrigated to remove small stone fragments as they are cre-

ated [14]. Forceps may also be used to remove larger kidney stone fragments through

the nephroscope [14].

Although PCNL is a highly effective kidney stone treatment option, it is considerably

more invasive than SWL and ureteroscopic fragmentation and retrieval; therefore, it

has higher complication rates in particular related to bleeding and infections [1,5,9,10].

Most of the complications related to PCNL are caused by mistakes in tool steering

when gaining kidney access. During the puncture step, it is possible to miss the kidney

and instead damage the surrounding tissue. This includes puncturing the pleural

leading to a pneumothorax, hydrothorax, or hemothorax, or puncturing nearby organs

such as the colon [17–20]. It is also possible to incorrectly puncture the kidney; causing

a vascular injury from the puncture of the renal pelvis or a calyceal infundibulum,

this is a possible result of not entering through a calyx [1, 17–20]. An example of

a possible cause for a vascular puncture and the resulting injury is shown in Fig.

1.3. Any of these described errors in tool steering during the puncture step can

lead to excessive bleeding and possible infection [17, 18, 21]. Barring the puncture

step, excessive bleeding can be caused by the sharp angulation of the nephroscope or

sheath during PCNL [17,18], therefore, careful control of the orientation is vital.

Since PCNL is not practiced as frequently as other kidney stone treatment options,
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(a) Example of a puncture that
causes a vascular injury. The
tool punctures the vasculature
and the renal pelvis.1

(b) A patient’s renal artery was
punctured during PCNL, there
are two pseudoaneurysms and a
large arteriovenous fistula. 2

(c) The kidney after treat-
ing arterial injuries, excessive
bleeding was stopped, pseudoa-
neurysms were embolized. 2

Figure 1.3: Possible cause of vascular puncture during PCNL puncture step, and the result-
ing bleeding complications from a patient who received a vascular injury during PCNL.

training opportunities are limited, further exacerbating the existing challenges for

novices when learning the procedure, in particular the initial puncture of the kidney.

Despite being the leading intervention for severe instances of renal calculi, only 11%

of urologists successfully gain access to the kidney stones themselves [22]. A variety

of studies have explored how many practice procedures must be performed to reach

proficiency, the reported number of trials recommended before a novice surgeon is

consider proficient varies from 30 to 100 attempts [6, 23,24].

Thus, it is integral to patient safety to provide novices with numerous effective train-

ing opportunities, or additional real-time assistance methods during the procedure

while thoroughly minimizing risks to patients. A variety of training options have

been created throughout the years to assist new surgeons in gaining the surgical skills

required to perform PCNL. These training options include both more traditional op-

tions that are a physical facsimile to part of the human body and more technologically

advanced options such as simulators.
1Reprinted from European Urology, vol. 51, Maurice Stephan Michel, Lutz Trojan, Jens Jochen

Rassweiler, Complications in Percutaneous Nephrolithotomy, p.899-906, Copyright 2016, with per-
mission from Elsevier [18]

2Reproduced under CC BY from [25], cropped slightly from originals
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1.2 Conventional Physical Training Options

Physical models are frequently used to train surgeons for numerous procedures in-

cluding PCNL. Training models are generally categorized as either wet models, which

are composed of real tissue, and dry models which are composed of synthetic materi-

als [6, 23, 26, 27]. Wet models include a variety of ex-vivo and in-vivo animal tissue,

human cadavers, while dry models include synthetic tissue phantoms, and large bench

models [6, 23, 26–28]. Wet and dry models are capable of providing similar training

opportunities, although the precise benefits of each vary [6, 23, 26].

1.2.1 Wet training models

Wet models provide considerably realistic training scenarios as they are made of an-

imal or human tissues, and provide accurate force feedback with relatively accurate

anatomy depending on the model. Small wet models are composed of ex-vivo animal

tissue, porcine is the most common selection [27]. A small wet model may be com-

prised of a pair of animal kidneys suspended in a material like silicone [28], or placed

inside additional animal tissue to represent the anatomical structures surrounding

the kidney [6, 29–31]; two of these small wet models are shown in Fig. 1.4(a) and

1.4(b). This type of wet model provides training opportunities for gaining kidney

access [6, 9, 24], and opportunities to train other PCNL subtasks such as stone scav-

enging, drainage catheter insertion; applying an imaging modality like ultrasound,

and fundamental surgical skills like incisions and sutures [28]. Some wet models are

small samples of porcine or poultry tissue that are used to train surgical dexterity and

other basic skills such as suturing. One of the largest benefits of small wet models

is their affordability and availability since ex-vivo porcine tissue can be sourced from

local butchers. However, these are low fidelity models which do not represent any

particular part of the kidney or other anatomy related to the procedure.
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(a) Catheterized porcine kidneys layed out on a
silicone base before being enclosed in silicone. 1

(b) Catheterized porcine kidney on the porcine
flesh used to represent the patients back. 2

(c) Vegetable model used to train puncture step
of the procedure. 3

(d) Anesthetized pig used to train entire PCNL
procedure. 4

Figure 1.4: A variety of wet training models for PCNL.

Larger wet models are also frequently used during later training phases once basic

surgery skills and knowledge have been acquired, they allow trainees to practice full

procedures and all skills related to PCNL. Similar to smaller wet models, they provide

accurate force feedback and other tissue characteristics. Large wet models include

human cadavers which provide the most accurate anatomy with no risk to the patient.

Although, medical cadavers can be challenging to acquire and this minimizes training

opportunities with them [6, 34]. In addition to cadavers, live anesthetized pigs, as
1Reprinted by permission from Springer Nature, Ex vivo training for percutaneous renal surgery,

Walter Ludwig Strohmaier et al [28] © Springer-Verlag 2005.
2Reprinted by permission from Springer Nature, New ex vivo organ model for percutaneous renal

surgery using a laparoendoscopic training box: the sandwich model, Stephan Jutzi et al [31] ©
Springer-Verlag Berlin Heidelberg 2013.

3Reproduced under CC BY-NC-SA 3.0 from [32]
4Reprinted from BJU International, vol. 106, Mahesh Desai, Ravindra Sabnis, Veeramani Muthu,

et al, Percutaneous renal access training: content validation comparison between a live porcine and
a virtual reality (VR) simulation model, p.1753-1756, Copyright 2010, with permission from John
Wiley and Sons [33]. Cropped slightly from original.
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shown in Fig. 1.4, are used to practice the procedure [33]. Training with live animals

provides highly realistic scenarios with the opportunity to train on a patient that

bleeds, breaths, and presents other physical phenomena which are experienced when

working with live patients [23,27]. Live animals can be difficult to store and transport;

additionally, there are ethical and legal issues that must be considered when working

with live animals [23].

While not frequently studied, some early training for gaining kidney access may be

performed on fruit or vegetable models (aubergines and watermelons are common

choices) an example of this is shown in Fig. 1.4(c) [6, 32]. Although these are not

animal-derived tissue specimens like others presented in this section, they are still

similar enough to other wet model examples to be included here.

The biggest drawbacks of wet model training are their limited uses. Many of the mod-

els can only be used once which drastically limits training opportunities [6,23,27]. The

materials for the smaller wet models must be sourced and the models constructed for

each use, which presents a significant financial requirement and requires manpower

to create enough models for several training opportunities. Live animals pose even

greater problems in regard to their transport, storage, and care. Moreover, live ani-

mals require anesthetic resources and manpower during the procedure which requires

notable planning efforts for a single-use training scenario while posing ethical and

legal issues [6,23,27]. Finally, while human cadavers pose excellent training opportu-

nities there are limited training scenarios available with these and they only provide

a single training use each.

1.2.2 Dry training models

An alternative to wet models are dry models, these provide repeated usage and are

generally easier to transport [6, 26]. These include some low fidelity tissue phantoms

that do not closely represent any particular anatomy related to PCNL and as such,

they are used primarily to train individual subtasks and skills required to complete

the entire procedure [26, 35]. Matsumoto in [36] found that low-fidelity models are
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(a) The UROMentor physical training simulator.
Source: reproduced from [37]

(b) Medskills Standard Scope Trainer. Source:
reproduced from [38]

Figure 1.5: Three types of physical dry training models.

effective training devices as long as the skills trained on them accurately represented

the skills required in actual practice. To training on the entire PCNL procedure

in an operating room environment, larger physical models are necessary to provide

trainees the ability to repeatedly train for PCNL. A few different larger bench models

exits such as the URO Mentor from 3D Systems [37] and the Medskills Standard

Scope Trainer [38], depicted in Fig. 1.5(a) and 1.5(b) respectively. These larger

bench models allow trainees to practice the entire procedure of PCNL rather than

individual skills or subtasks. Some of the more advanced physical simulators like the

URO Mentor can mimic a variety of tactile and physical phenomena while providing

imaging simulated imaging feedback [37]. While these models represent a slightly

higher initial cost than wet models, their repeated usability makes them a common

and effective training tool [6, 23, 26, 35]. The drawback associated with many bench

models and tissue phantoms is in the tactile feedback they provide, which does not

mimic the feedback experienced during percutaneous nephrolithotomy. Additionally,

bench models only allow for a few select scenarios or parts of a procedure to be

experienced, and this may limit the training opportunities even further [6, 23].

A desirable training model allows for a procedure to be attempted repeatedly while

also providing accurate tactile and image feedback. To this end, virtual simulators

have been created to provide additional training opportunities for PCNL.
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1.3 PCNL Simulation Training Options

PCNL simulators provide a safe and effective training method, allow repeated usage,

and can simulate a variety of scenarios. PCNL simulators are able to mimic a variety

of physical phenomena, such as breathing, that are encountered during the procedure

and may not be present in dry or wet models [26]. They are also able to simulate

a variety of scenarios including abnormal kidney anatomy, various kidney stone sizes

and placements, and possible complications [6]. Additionally, unlike smaller physical

models, they allow the user to practice the entire procedure in most simulators [6,

26]. Further, simulators can record participant performance, tool trajectories, and

other measures of performance to provide quantitative and qualitative feedback on

performance for the procedure.

A frequently used simulator is the PERC MentorTM, while sometimes referred to as a

virtual reality system, it employs a cyber-physical approach by implementing an in-

teractive physical model as well as computer-based simulated components. Thus, the

system is more accurately described as an augmented reality (AR) training simulator,

see Fig. 1.6(a) [6, 26, 39–41]. The PERC MentorTM has demonstrated to be a highly

effective training tool for PCNL [40, 41]. Augmented reality creates detailed training

scenarios with some tactile feedback from the physical model; although, the available

scenarios may be limited by the physical model [26].

Another type of simulator that has been implemented for PCNL training is virtual

reality (VR). This allows surgeons to see and interact with the tools and imaging

they may experience in an operating room similar to augmented reality. However, the

benefit of a more fully virtual platform is in its flexibility in procedure and scenarios.

VR systems like the VirtaMed UroSTM Fig. 1.6(c) or the Marion Surgical K181 PCNL

Simulator [26] Fig. 1.6(b) are able to provide a wide variety of training scenarios while

providing some tactile feedback to the user through a haptic device representing the

tool. Both VR and AR simulators can provide data to the user as they record the full

procedure including tool movements, completion time, etc. In particular, the benefit
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(a) PERC MentorTM aug-
mented reality simulator.
Source: reproduced from [37]

(b) Marion Surgical K181
PCNL virtual reality simulator.
1

(c) VirtaMed UroSTM virtual
reality simulator. Source: re-
produced from [42]

Figure 1.6: Virtual and augmented reality PCNL training simulators.

of simulators is their reusability. Individual scenarios can be attempted several times,

or adjusted slightly each time, providing more training opportunities for novices. Some

of the drawbacks of simulated training systems are the fidelity of tactile information

or other physical feedback [6,26]. While both AR and VR generally incorporate either

a physical model or some amount of haptic feedback that may be similar to what is

experienced during a procedure, these areas still need improvements to be more akin

to what is experienced when working with actual tissue [43]. Further, these simulators

are generally expensive which creates a higher barrier of entry compared to some of

the physical models described earlier.

While a novice will have received significant training on models and simulators, the

fine-tuning of their skills with the procedure will be completed on real-world patients.

Ideally, the shift to human patients should be made as safe as possible. To that

end, robotic assistance can ease the transition while continuing to provide additional

feedback or assisting the surgeons during the procedure.
1Reproduced under CC BY from [26]. Cropped slightly
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1.4 Assistance types available during PCNL

Due to the risks associated with PCNL and the challenges in performing the proce-

dure while gaining competency, assistance can help offset the inexperience of a novice

surgeon. These assistance methods are applied in real-time in the operating room to

both train a novice and further ensure the safety of the procedure. Assistance can be

sought through a variety of means such as visual assistance through augmented real-

ity, physical assistance through haptic feedback, or by semi or fully automating the

procedure. Semi-autonomous in the context of surgery can refer to the automation of

surgical subtasks: gaining kidney access, scavenging for stones, and more. Alterna-

tively, fully autonomous surgery paradigms include one or more robotic manipulators

to perform the procedure with little to no input from the surgeon. Some of these

assistance methods have been proposed in literature to be applied to PCNL, while

others have been applied to a variety of other surgical procedures and demonstrate

qualities that may be suitable for application to PCNL [44–48,48–54].

Due to the challenges encountered in PCNL from inexperience to challenging patient

anatomies, the application of assistance during the procedure is a natural solution

when bridging the gap from novice to expert or providing additional help to experts

during particularly complex scenarios. A commonly studied type of assistance during

PCNL is augmented reality. Some of the earlier uses of augmented reality are applied

by using preoperative imaging to create 3D models of the kidney and then projecting

this 3D model onto other imaging options to provide the surgeon with more data

during the procedure [55–57]. In [55, 56] an Ipad is used as a camera and display,

it overlays a correctly oriented 3D model of the kidney on the live image of the

procedure while a novice gains kidney access. Similarly, [57] projects the 3D model

onto ultrasound images during the procedure to better visualize the kidney’s internal

structures. Ferraguti et al. propose two different forms of assistance in [58]. First,

they apply augmented reality to overlay a patient’s anatomical structures in a VR

display. Second, they use a robot manipulator to apply haptic assistance, guiding the

user to the correct puncture site and assisting in maintaining tool orientation during
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the puncture step.

Robot assistance is becoming increasingly common in a variety of surgical procedures

due to its precision and consistency. Robotics can aid novices when learning PCNL

while maintaining patient safety, or assist expert surgeons in particularly complex sce-

narios. For example, [59] controlled for out-of-plane motion using robotic assistance,

thus, accounting for the patient’s breathing during the puncture step. This method

of robotic assistance aims to simplify the procedure somewhat for the surgeon per-

forming it by allowing a robot to handle an aspect of the procedure. Likewise, robots

can be used to automated surgical subtasks such as [60] where the kidney puncture

is performed autonomously.

A clinically implemented version of robotic assistance exists in the form of teleop-

erative platforms. These allow a surgeon to perform the procedure with increased

precision and control. These systems may implement tremor reduction to reduce un-

intended micro-movements by the surgeon, or through gesture reduction which allows

a surgeon to precisely control a surgical instrument with a small workspace. In recent

years this form of robotic assistance has been implemented for robotic nephrolitho-

tomy and robotic pyelolithotomy, although these intervention methods are generally

only used for more complex cases of nephrolithiasis [61–63]. This method of robot

assistance does not provide additional assistance other than increasing a surgeon’s

control and precision during the procedure. A surgeon still needs to be skilled in

order to perform robotic nephrolithotomy and robotic pyelolithotomy since they will

receive no guidance or other help from the robot.

Several robotic assistance methods have been applied to medical interventions other

than PCNL. These assistance methods can include teleoperative robotic imaging con-

trol such as fluoroscopy or ultrasound steering [44–46]. These systems provide pre-

cision, stability, and repeatability of the imaging modality. Additional robotic assis-

tance based on visual servoing can greatly benefit from stable imaging with accurate

positioning information from the robotic manipulator. Another form of assistance

aims to simplify the procedure or increase patient safety by applying constraints
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through a teleoperated robotic platform [47, 48]. These constraints aim to simplify

the procedure by maintaining the orientation and/or position of a tool, such as the

entry point, or by adding environmental constraints that ensure collision-free motion

of the tool [48–50]. Simplifying a procedure can also be achieved through the automa-

tion of surgical subtasks. Automation of this kind usually requires a surgeon to set up

and align the robotic system and supervise the autonomous execution of the subtask.

This form of semi-autonomous assistance has been explored for blunt dissection, soft

tissue retraction, oral and maxillofacial surgery, and more [51–54].

A less autonomous approach to robotic assistance can be sought through tactile feed-

back during teleoperation tasks. This form of feedback provides additional informa-

tion to the surgeon which can be beneficial for novices and experts. Haptic assistance

is able to keep a human in control of a procedure, which is often lost in more au-

tonomous assistance methods. One application of haptic feedback for medical inter-

ventions is in providing environmental cues to assist a surgeon in avoiding sensitive

anatomical structures such as the placenta during fetal laser surgery, vein walls dur-

ing endovascular procedures, and implementing a working region for brain tumour

removal [64–66]. Alternatively, haptic feedback can restrict motion even further by

guiding a user along a desired trajectory [67, 68]. Tactile feedback has also been ex-

plored to communicate tissue characteristics to the surgeon. This can include the

tissue forces to mimic the tactile sensations felt during manual surgery, or to iden-

tify different tissue types such as cancerous tissues [69–72]. While haptic assistance

has been shown to be beneficial for a variety of medical procedures, it has not been

explored in much detail for PCNL outside of training in simulators.

The assistance methods applied to PCNL focus primarily on training scenarios such as

those provided in simulators. Some efforts have been made to include additional visual

information to novices while performing the puncture step of the procedure. Never-

theless, PCNL training and clinical use would benefit from more advanced frameworks

to improve a surgeon’s performance during PCNL.
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1.5 Proposed Framework

Robotic assistance methods for PCNL have not been thoroughly explored, despite the

widespread clinical acceptance of PCNL and the documented challenges and safety

concerns. Particularly, little focus is applied to bridging the gap between training

platforms and a novice’s first real-world interventions. Furthermore, haptic feedback

has not been suitably explored and evaluated for its effectiveness in teaching the

PCNL procedure. The training framework proposed in this thesis aims to provide a

framework to simplify the procedure for the user. Additionally, haptic feedback from

an expert demonstration is implemented to teach a novice the correct trajectory while

keeping them in control of the operation. This framework can be implemented both

on tissue phantoms or other training situations, or during some of the novice’s first

interventions to provide a smooth transition for the novice from training scenarios to

the operating room. A skill assessment method is created to determine the effective-

ness of training an unskilled user with haptic feedback. The results from a minimal

set of training and evaluation samples found that the haptic feedback proposed in this

thesis is a suitable method of training and improves a user’s performance even once

the haptic feedback is removed.

In addition to haptic feedback for training, robotic assistance is also proposed. Tool

path planning and tracking have remained unaddressed in literature relating to robot-

aided PCNL. This is addressed in this thesis through the use of a multi-objective

optimizer that determines an optimal path through the entry point in the kidney to a

desired goal location. The path is represented with a uniform B-spline, which requires

only a few anchor points to determine the entire path, simplifying the dimensionality

of the optimization problem. The multi-objective optimizer considers a unique set of

four cost functions that are selected specifically for the application of gaining access

to kidney stones during PCNL. These four objectives include trajectory smoothness,

tool proximity to obstacles, tissue strain energy at the entry point, and path length.

Each of the four objectives serves to plan an appropriate path that considers patient

safety.
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Some of the important factor that are considered by surgeons when moving from open

surgeries to minimally invasive ones are recovery times and possible complications.

PCNL is no exception. Studies have shown that decreasing the size of the nephroscope

leads to less bleeding and potentially shorter recovery times. Small nephroscopes, also

referred to as micro nephroscopes, are used more frequently in paediatric patients.

The smaller size of these tools leads to potential bending of the nephroscope itself.

Similarly, the puncture needle may also undergo bending while gaining kidney access.

This may lead to trajectory tracking errors during more autonomous approaches. To

address this issue a trajectory tracking algorithm is developed in this thesis. It employs

a novel tool/tissue interaction model to determine the possible tool bending along

a trajectory. This model is combined with a multi-objective optimizer to solve the

inverse problem of finding a suitable tool pose where the tip location traces the desired

trajectory. This framework is then evaluated through simulations and physical trials

on ex-vivo porcine tissue to demonstrate its ability to compensate for tool and tissue

deformation during the procedure. This algorithm may also allow for more flexible

tools to be used in the future with semi-autonomous frameworks. A more flexible tool

would likely cause reduced tissue trauma and provides more manoeuvrability within

the kidney, thus, requiring fewer incisions and entry points for more severe cases of

nephrolithiasis.

1.6 Thesis Objectives and Outline

This thesis focuses on creating a semi-autonomous and autonomous robotic framework

to train novices and simplify the PCNL procedure for experts. The first framework

proposed in this thesis provides haptic feedback based on a predefined trajectory to

train a novice or assist an expert surgeon during kidney access. Haptic guidance for

PCNL has not been explored in literature in detail, despite the documented challenges

in successfully gaining kidney access. This guidance is combined with a constrained

kinematic environment for the robot arm to reduce the user’s workload, thereby,

further simplifying the procedure.
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The second framework focuses on automating kidney access. First, an optimal tool

trajectory is planned using preoperative information. This trajectory is then imple-

mented as an automated subtask where the robot performs the puncture step and

reaches the kidney stones autonomously. To further automate gaining kidney ac-

cess, a tool/tissue interaction model is used to determine potential tool bending and

compensate for it with a trajectory tracking algorithm.

This thesis is organized as follows:

Chapter 2 presents the cyber-physical PCNL framework proposed to train novices

and has three complementary contributions. First, a teleoperation framework is used

where the position and orientation of the robot are decoupled and the operator only

controls the Cartesian position of the tooltip. The second contribution lies in the

implementation of the haptic assistance. The simulator creates a potential field of

forces based on an expert demonstration provided in the physical slave environment.

This potential field is then used to determine the magnitude and direction of haptic

feedback force to apply. The final contribution proposes a method of evaluating the

effectiveness of the framework proposed in this chapter. Sixteen participants took part

in a total of five trials each. A unique set of evaluation criteria are created to evaluate

the individual performance of each participant and demonstrated the effectiveness of

training with haptics.

Chapter 3 presents a path planner that serves as the foundation for automated

robotic PCNL. Multi-objective non-dominated sorting genetic algorithm II (NSGA-II)

is proposed to plan a B-spline curve through a set of anchor points that represents the

desired tooltip trajectory from the entry point to the stone location. The outputs of

the algorithm are the optimal spline coefficients that minimize the trajectory length,

tissue displacement, and trajectory smoothness, while maximizing the distance to

obstacles.

Chapter 4 takes the concept one step further and proposes two contributions. First, a

novel tool/tissue model is proposed to describe the deflection of a flexible tool during

robot-aided PCNL. The second contribution involves using the model in a multi-
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objective optimizer to solve the inverse kinematic problem that allows the deformed

tool to follow a predefined trajectory given multiple objectives.

Chapter 5 presents the general conclusion of the work proposed here and recommen-

dations for future work.
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Chapter 2

Constrained Haptic-Guided Shared

Control for Collaborative

Human-Robot Percutaneous

Nephrolithotomy Training

© Elsevier Ltd

Reprinted, with permission from Olivia Wilz, Ben Sainsbury, and Carlos Rossa,

Constrained Haptic-Guided Shared Control for Collaborative Human-Robot Percutaneous Nephrolitho-

tomy Training,

Mechatronics, 0957-4158, vol. 75, p. 102528, 2021. DOI: 10.1016/j.mechatronics.2021.102528
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2.1 Introduction

THIS chapter introduces a teleoperative framework for PCNL (percutaneous

nephrolithotomy) training. The cyber-physical simulator proposed here assists

surgeons in two ways: first, by providing haptic feedback to the operator to help teach

the optimal manoeuvers to gain kidney access; second, by reducing the procedure

workload through surgical subtask automation using a robotic agent.

2.1.1 Haptic Feedback

Haptic feedback has been explored for training in surgical scenarios other than PCNL.

While some debate still exists on the effectiveness of haptic assistance and feedback,

literature suggests that when haptic feedback is task-specific, it provides additional

useful information to a surgeon leading to reduced learning times, improved task per-

formance, quality, dexterity, improved retention rates [73–75], and better acceptance

of simulator training by professionals [76]. The most frequent implementation of hap-

tic feedback is by creating virtual fixtures to prevent a tool from reaching certain areas

in a workspace to protect sensitive tissues [77–79]. Another form of haptic feedback

aims to mimic the tactile forces felt during the procedure, these generally incorporate

force sensors into the surgical instruments and recreate these forces in a teleoperative

setup [80]. While these forms of haptic feedback have been shown to be beneficial

for experienced surgeons during teleoperated surgery, they are not meant to teach a

surgical task.

To address this problem, haptic feedback is proposed to guide a surgeon along a

predefined path in [67, 81], and specifically to guide a novice through the insertion

task of PCNL in [58]. Kidney access was decomposed into different subtasks and

a specific form of haptic feedback was provided during each task. The framework

required the surgeon to maintain tool orientation during the insertion step, and as

such, it requires significant skill and knowledge from the surgeon. Further, haptic cues

for gaining kidney access were not suitably assessed for what benefits they provided
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during the procedure.

In addition to providing haptic feedback, training can be made easier by simplify-

ing the teleoperative environment. This concept may be explored in surgical subtask

automation such as tool orientation, stone fragmentation, stone removal, etc., while

the surgeon learns to perform a complementary task. Subtask automation allows the

workload to be shared between the operator and the robotic agent. In addition, data

acquired from expert surgeons can define an optimal tool path, and subsequently, a

robotic agent can assist the surgeon in following that path during surgery. In this con-

text, less experienced surgeons would benefit from the expertise of more experienced

surgeons.

2.1.2 Tool orientation subtask automation

Typically, gaining access to kidney stones during PCNL is done under two-dimensional

image guidance. It becomes challenging to visualize and mentally recreate the three-

dimensional anatomy of the kidney and the relative location of stones and tools. To

simplify the workload, the entry point into the kidney can be constrained to minimize

damage to the surrounding tissue. With the assistance of a robotic manipulator, a

remote centre of motion (RCM) can be implemented to constrain the entry point in

this fashion.

Remote centers of motion have been explored for their applicability to medical proce-

dures, primarily through physical assistive devices that restrict a surgeon’s available

motion [82–85]. Nevertheless, some instances of RCMs used within robotic frameworks

do exists. For example, Garcia et al. [86] applied a RCM to a robotic manipulator

mounted on a mobile robot. A remote centre of motion is proposed for implementa-

tion in a surgical environment in [87]. While the RCM is beneficially in simplifying

the procedure for a novice, the inverse kinematic framework described in this chapter

proposes to combine a RCM constraint with joint limit constraints incorporated into

the inverse kinematic framework of the robotic manipulator to ensure patient safety

while minimizing the mental workload for the surgeon.
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Figure 2.1: The general setup of cyber-physical robot-aided PCNL training framework. The
3 DOF (degrees of freedom) haptic device provides position information to the controller
while receiving force feedback information. The controller sends joint angles to the 6 DOF
robotic arm, allowing the 3 DOF haptic device to control the 6 DOF robotic arm.

2.1.3 A cyber-physical simulator for PCNL training

This chapter aims to merge haptics and robotic assistance to implement a novel

cyber-physical simulator for PCNL training. These two forms of robotic assistance

work alongside the operator in a collaborative fashion. With the teleportation scheme

shown in Fig. 2.1, the robotic agent helps the operator follow a predetermined kidney

access path while maintaining the remote centre of motion. Further, the incorporation

of haptic feedback allows the surgeon to compensate for trajectory tracking errors

while maintaining full control of the procedure.

The cyber-physical simulator system is shown in Fig. 2.1, where a 3 degree of freedom

(DOF) haptic device is used to control a 6 DOF robotic arm. The inverse kinematics

constrain the entry point in the tissue to the tool shaft, thus the surgeon only controls

the Cartesian position of the tooltip. The controller determines the force feedback to

send to the user and updates the robot joint angles based on the inverse kinematics.

This framework has three complementary parts. First, teleoperation is used to de-

couple the position and orientation of the robot such that the operator only controls
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the Cartesian position of the tooltip while the robot ensures that the position of the

entry point in the tissue remains unchanged. This is the idea behind a remote centre

of motion. The RCM is incorporated into the inverse kinematics by considering the

entry point as the tip of a tool with variable length, while the joint limits are included

analytically in the formulation using a saturation function for the joint speeds. This

is the focus of section 2.2.

The second part of the framework implements haptic assistance. The simulator bases

the potential field on an expert demonstration provided in the physical slave environ-

ment, where the demonstrator controls the robot through the haptic device, and the

stiffness of the potential energy field is dependent on the proximity to the phantom

tissue. This potential field is then used to determine the magnitude and direction of

haptic feedback force to apply. This is discussed in section 2.3.

Finally, a method to evaluate the effectiveness of the framework is proposed in this

chapter.

The remainder of this chapter is organized as follows. Section 2.4 focuses on user trials

along with the validation of the analytical joint limitations. The results are discussed

in detail in section 2.5. The overall performance of the contributions is discussed in

section 2.6, along with potential future improvements.

2.2 Inverse Kinematic Formulation for Constrained

Tool Orientation during PCNL

During PCNL a long thin tool is inserted into a small incision into the patient’s back

to gain access to the kidney; this requires the control of the position of the tooltip

as well as the orientation of the tool to ensure that it continues to pass through the

entry point during insertion. Once inside the kidney, multiple kidney stone locations

may be reached through the same entry point. Thus the path of the tooltip is not

a straight path and navigation within the kidney is necessary. While some deviation

from the entry point is acceptable this should be minimized to reduce the risk of
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additional tissue damage. To this end, the entry point in the kidney can be used to

constrain the tool’s orientation.

In the context of robot-assisted PCNL, these two points – that is the tooltip position

and entry point – are sufficient to solve for the inverse kinematics of the robotic

manipulator using a remote centre of motion. This remote centre of motion (RCM)

allows the user to navigate the tooltip within the kidney to reach a desired goal

location. Since the robot will control the tool to ensure that it passes through the two

points in space, the inverse kinematics need to be developed in terms of six Cartesian

coordinates (two 3D points) rather than three Cartesian coordinates defining the

position and three angles defining the orientation. The inverse kinematics should

take into account the joint limits of the manipulator so as not to exceed them during

operation.

To configure the inverse kinematics as described above, the forward kinematics must

be determined to define the RCM and the tooltip position based on the joint angles

of the manipulator.

2.2.1 Forward Kinematics

The forward kinematics of the robot arm is derived using the modified Denavit-

Hartenberg convention which specifies a set of homogeneous transformations i−1
i T

that expresses the position and orientation of the kinematic chain’s ith joint with

respect to joint i− 1 as:

i−1
i T =



cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1

sθisαi−1 cθisαi−1 cαi−1 dicαi−1

0 0 0 1


(2.1)

where c(·) stands for cos(·) and s(·) for sin(·), θi is the angle of the ith joint about

its rotational axis, αi−1 is the angle from the previous (i − 1) rotational axis to the

current (ith) rotational axis sometimes called link twist, ai−1 is the distance from the
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previous joint axis to the current joint axis (generally the previous link length) and

di is the displacement of the current link along its axis of rotation also known as the

link offset.

The transformation matrices are multiplied, as shown in (2.2) and (2.3) where j is the

total number of degrees-of-freedom (DOF). The tooltip j
tp ∈ IR4×1 and constrained

point jcp ∈ IR4×1 can be described relative to the jth reference frame by using only the

fourth column of (2.1), since their orientations are not necessary. The tooltip position
0
tp ∈ IR4×1 is

0
tp =

j∏
i=1

(i−1
i T) j

tp. (2.2)

The constrained point position 0
cp ∈ IR4×1 is

0
cp =

j∏
i=1

(i−1
i T) j

cp. (2.3)

Since the constrained point is along the tool shaft its location can be defined in the

same way as the tooltip with the only notable difference being the tool length dt and

dc as shown in Fig. 1. The tool itself will have a constant length, while the distance

to the constrained point is variable depending on the insertion depth l of the tool

inside the kidney such that dc = dt − l. This means that j
tp can be defined as:

j
tp =

[
aj −dtsαj dtcαj 1

]T
, (2.4)

where the transpose is denoted by (·)T , and j
cp can be defined relative to j

tp as:

j
cp =

[
ai−1 −dcsαj dccαj 1

]T
=j
t p−

[
0 −lsαj lcαj 0

]T
, (2.5)

The vectors created in (2.2) and (2.3) together contain six equations for describing

the tool’s tip and constrained point positions relative to the base. Altogether they

make up the forward kinematic solution. These equations are used to find the inverse

kinematic formulas; however, the results need to be bounded by the joint limits of the
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manipulator. To take the joint limits into account during the inverse kinematic model,

a nonlinear saturation function is implemented that limits the speed of a given joint

when it approaches its limit. This is implemented as a nonlinear gain in the Newton

Raphson method. Which has the added benefit of providing a unique and feasible

solution rather than multiple solutions where a particular configuration needs to be

selected.

2.2.2 Constrained Inverse Kinematics

The tooltip and constrained point positions and velocities can both be found using the

current joint angles and angular velocities. To find the constrained inverse kinematics

the opposite must be done, such that the joint angles can be found based on the

tooltip and constrained point positions.

Let pi be the ith entry in vector p defined in (2.2) and (2.3). One can define the task

space vector x ∈ IR6×1 as

x = [0tp1
0
tp2

0
tp3

0
cp1

0
cp2

0
cp3]T . (2.6)

Normally, the Jacobian is constructed using three equations describing the position

and three describing the orientation of the manipulator. In (2.6), however, the Jaco-

bian is constructed from the six position equations, three for the tooltip position and

three for the remote centre of motion. Generally, when constructing a Jacobian ma-

trix for a robotic manipulator, three equations for position and three for orientation

are used, rather than 6 position equations.

These equations define the position of the tool; it is important to note that while this

allows the 6 DOF manipulator to be controlled with a 3 DOF device, only 5 DOF are

being accounted for since the tool can be rotated about its longitudinal axis which

does not affect its Cartesian position. Let:

Θ = [θ1 θ2 . . . θj]T . (2.7)
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be the joint space vector of the manipulator (∈ IRj×1). The Jacobian describes the

relationship between ẋ (the vector of the Cartesian velocities) and Θ̇ (the vector of

the angular velocities) as

ẋ = JΘ̇, (2.8)

here the time derivative is denoted by the (˙) operator. In (2.8), J ∈ IR6×j is defined

as:

J = ∂x
∂Θ

=



∂0
t p1
∂θ1

∂0
t p1
∂θ2

· · · ∂0
t p1
∂θj

∂0
t p2
∂θ1

∂0
t p2
∂θ2

· · · ∂0
t p2
∂θj

∂0
t p3
∂θ1

∂0
t p3
∂θ2

· · · ∂0
t p3
∂θj

∂0
cp1
∂θ1

∂0
cp1
∂θ2

· · · ∂0
cp1
∂θj

∂0
cp2
∂θ1

∂0
cp2
∂θ2

· · · ∂0
cp2
∂θj

∂0
cp3
∂θ1

∂0
cp3
∂θ2

· · · ∂0
cp3
∂θj



. (2.9)

Joint angles must be found for the manipulator that satisfy the desired tooltip and

constrained point positions. These joint angles must be achievable for the physical

manipulator. In this formulation, the joint limits will be considered during the inverse

kinematics to find a feasible solution. This is done by converting the joint angles to

a different variable that saturates as it approaches a joint limit. The variable is then

converted back to the original joint space where it is now bounded by the limits.

First, let θui and θ`i be the upper and lower limits of joint i respectively. The de-

sired transformation function that converts the joint angles to a new space must be

continuously increasing within the open interval
(
θ`i θ

u
i

)
. The arctangent function is

one that meets these criterion. It is used by linearly mapping θi from the joint limits(
θ`i θ

u
i

)
to the open interval

(
−π

2
π
2

)
by

υi(θi) = tan
(
π(2θi − θui − θ`i )

2(θui − θ`i )

)
(2.10)

which is shown in Fig. 2.2(a) on the left-hand side. The inverse of (2.10) converts the
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(a) Joint angle saturation function

(b) Constrained inverse kinematics overview

Figure 2.2: The inverse kinematics of the system, left (a): the arctangent function as given
in (2.10), where υi is the remapped joint angle; and right (a): converting the joint angles
back to the joint space (2.11) where they are restricted by the joint limits. (b) shows the
control loop of the inverse kinematics, it takes the desired tooltip position xd and initial
joint angles Θ0 as inputs and outputs the corresponding joint angles Θ by minimizing error
ε, k is a constant gain and the pseudo-inverse, constrained Jacobian is J† (υ).

transformed joint angle back into physical joint angles θi as follows

ϑi(υi) = θi(υi) = θui − θ`i
π

tan−1 (υi) + θui + θ`i
2 . (2.11)

Note that θi is now bounded between the joint limits θ`i and θui as shown in Fig. 2.2(a)

on the right hand side and is now denoted as ϑi.

To compute the inverse kinematics, a new Jacobian has to be constructed based on

the modified joint space. The constrained Jacobian Jc is now computed as the partial

derivative of the task space for the transformed joint space as

Jc(υ) = ∂x
∂υ

= J(Θ)dϑ, (2.12)
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where J(Θ) is defined in (2.9) and dϑ is a j × j diagonal matrix given by

dϑ =



∂ϑ1
∂υ1

0 · · · 0

0 ∂ϑ2
∂υ2

· · · ...
... 0 . . . 0

0 · · · 0 ∂ϑj
∂υj


, (2.13)

and
∂ϑi
∂υi

= θui − θ`i
π(1 + υ2

i )
. (2.14)

Now the inverse solution of (2.8) can be found considering the change of variable and

the joint limits as:

υ̇ = J†(υ)ẋ (2.15)

where J†(υ) is the pseudo-inverse, constrained, Jacobian matrix defined as

J†(υ) = Jc(υ)T
[
Jc(υ)Jc(υ)T + µI

]−1
(2.16)

where I ∈ IR6×6 is an identity matrix and µ ∈ IR+ << 1 is a damping constant scalar

used to avoid possible discontinuity of the pseudo-inverse at a singular configuration

of the manipulator.

Let υd be a solution to a desired Cartesian position of the tooltip and constrained

point xd ∈ IR6×1, and ε define the error between the desired and actual Cartesian

position as

ε = xd − x. (2.17)

A proportional control law in the form of

υ̇ = kJ†(υ)ε (2.18)

guarantees that ε = xd − x→ 0 (that is xd = x), and thus υ approaches υd provided

that the constant k is positive. This gives a least squared solution to (2.15) when

the Jacobian is full rank. The solution ensures that the υ̇ is minimized given that
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(2.13) increases monotonically in the open interval (θ`i θui ). The inverse kinematics

process is shown in Fig. 2.2(b), where the desired position and constrained point xd is

given as an input along with the initial joint angles Θ0. The error ε, calculated as the

difference between the desired position xd and the current position x, is multiplied by

the constant gain and the pseudo-inverse Jacobian J† which gives the change in angle

υ̇. Integrating the change in angle and adding the initial joint values provides the new

joint values which just need to be converted to the joint space through (2.11). This

loop is repeated until ε ∼= 0 at which point the joint angles are sent to the manipulator.

The inverse kinematics has been defined based on the forward kinematics while ap-

plying the joint limits. The forward kinematics is defined based on joint angles and

the physical structure of the manipulator. A 6 DOF (or greater) robotic arm can

now be controlled using a 3 DOF haptic device through the inverse kinematics. The

next step is to generate haptic feedback based on the tooltip position and expert

demonstrations. The haptic feedback can then be used to guide the user through the

procedure.

2.3 Haptic Assistance from Demonstrations

To guide a user based on a previously demonstrated trajectory, the trajectory first

needs to be collected. While a demonstration is given by one user through the cyber-

physical simulator, the tooltip positions are recorded. These points provide informa-

tion about the path the demonstrator used to accomplish the specified task.

The next step is to generate force feedback based on the demonstration to guide

a user; to this end, the well-known concept of potential fields (introduced in [88])

is proposed. The use of potential fields allows the haptic feedback provided to be

time-invariant; this is important because it keeps the surgeon in full control of the

operation, allowing them to make active adjustments during the procedure such as:

correct for possible changes in the environment, deal with issues that did not appear

in preoperative imaging, or a change in the position of the kidney, kidney stones, or
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the patient. The entry point is, however, not influenced by possible misaligments or

changes from preoperative imaging since it is determined by the surgeon during the

procedure.

By controlling the interaction impedance, that is, the ratio of applied force to the

magnitude of deviation from the reference trajectory, the haptic feedback can be

made more or less compliant in certain regions. This allows a human and a robotic

agent to act cooperatively towards accomplishing a task such as following a given

path.

The assistive forces are calculated based on a non-parametric potential field function

[88]. These forces are applied by the haptic device and its spatial impedance is

captured by a potential function gradient and curvature.

2.3.1 Potential Force Fields from Trajectory Demonstrations

Potential fields have been proposed to guide robotic manipulators through autonomous

tasks. However, these potential fields can also be applied to generate haptic feedback

forces during teleoperation. Since the forces are time-invariant and include bounded

force ranges, the stability of the robot is guaranteed when in contact with passive

environments.

The tooltip position is used as an index to calculate the force that needs to be applied

to the user based on the location of the tooltip in 3D space.

All of the sampled reference trajectory data points are concatenated in a single vector

ξd ∈ IR3×N , where N is the total number of data points from all reference trajectories.

The nth column in ξd is given by

ξnd =
[

0
tp1

0
tp2

0
tp3
]T
. (2.19)

The potential field has to be created for a specified workspace whose points in 3D

space are denoted ξ ∈ IR3×k in which ξ represents the 3D Cartesian coordinate of
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a point within the defined workspace boundary and k is the total number of points

used to represent the workspace. The higher the k value is, the higher the resolution

and smoothness of the potential field, at the cost of computational time and memory

usage.

A potential energy field φ is generated for demonstration point n as follows:

φni (ξ) = φn0 + 1
2S

n (ξi − ξnd )T (ξi − ξnd ) , ∀n ∈ 1 . . . N,∀i ∈ 1 . . . k (2.20)

where the stiffness and the initial potential energy for the nth data point, are defined

as Sn and φn0 respectively and ξi is the ith entry in ξ.

A Gaussian Kernal is used to create a weighting element for each demonstration point

as

ωni (ξ) = e
− 1

2(σn)2 (ξi−ξnd )T (ξi−ξnd ) ∀n ∈ 1 . . . N,∀i ∈ 1 . . . k, (2.21)

in which, σn ∈ IR+ is a smoothing parameter that controls the region of influence for

the nth data point. Using weighted sums, the potential field Φ ∈ IR1×k at ξ can be

computed using element-wise multiplication and division as:

Φ(ξ) =
∑N
n=1 ω

n (ξ)φn (ξ)∑N
n=1 ω

n (ξ)
. (2.22)

One can also implement a dissipative field in the form of a controllable damper pa-

rameter to take into account the robot’s speed in the haptic forces. The damping

element ψn is created for each demonstration point n as follows:

ψn
(
ξ̇
)

= Dnξ̇ (2.23)

where Dn is a dissipative gain and ξ̇ is the velocity at ξ. These damping elements are

then combined similarly to the way that the potential fields are combined to generate

a dissipative field Ψ ∈ IR1×k by computing the weighted sums for element ξ using
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element-wise multiplication and division as:

Ψ
(
ξ, ξ̇

)
=
∑N
n=1 ω

n (ξ)ψn
(
ξ̇
)

∑N
n=1 ω

n (ξ)
. (2.24)

Finally, the dissipative field and the potential field are combined to create a force

field that will be used to apply a force that guides the user along a desired trajectory

ξd. The force field is generated by subtracting the dissipative field from the negative

gradient of the potential field as follows:

F = −∇Φ (ξ)−Ψ
(
ξ, ξ̇

)
(2.25)

where ∇ is the gradient. In Fig. 2.3(b) an example of a potential field Ψ is shown,

while in Fig. 2.3(c)&(d) the arrows are the force F. The force field will now be used

as a lookup table when providing haptic assistance.

The reference trajectories are obtained from demonstrations given by experts. These

demonstration points, however, are not evenly distributed in 3D space. This means

that the sample points may be clustered together in one area while being spread apart

widely in another. This unevenness can lead to some areas being too heavily weighted.

Because of this, the demonstrations should be re-sampled so that all of the points are

evenly spread apart. Alternatively, an optimization method can be used to assign

the ideal value of stiffness S and smoothing parameter σ to each demonstration to

generate a smooth potential field such as in [88].

Since each demonstration point is composed of three Cartesian coordinates, the poten-

tial field will exist in the fourth dimension. This increase in dimensionality is shown in

Fig. 2.3(a)&(b), part (a) shows several two-dimensional demonstration points while

part (b) shows the potential field that was built for these sample demonstrations; note

that the potential field is three dimensional.

After the gradient is taken of the potential field the dimensionality returns to that

of the demonstrations, as shown in 2.3(c)&(d) the arrows representing the gradient
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(a) Three demonstrations (b) Potential field

(c) Gradient of Potential Field (d) 3D example

Figure 2.3: Potential field construction starting with 2D reference trajectories (a) shows
three sample demonstrations that may be used as reference trajectories when constructing
the potential field, in (b) the potential field for the three reference trajectories is shown
along with its projection onto the x-y plane at the bottom, the z-axis here is the magnitude
of potential energy. Plot (c) represents the gradient of the potential field. The length of
the arrow is determined by the magnitude of the gradient at that point. Plot (d) shows an
example of a three dimensional reference trajectory (the black line in the centre), where the
arrows again represent the gradient that is taken of the potential field, these describe the
haptic feedback for the given reference trajectory.
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of the potential field, are all two-dimensional for the 2D demonstrations and three-

dimensional for the 3D demonstrations.

2.3.2 Using potential fields for haptic assistance in PCNL

The haptic device receives two inputs, one from the user and the other from the

force field; this is shown in Fig. 2.4(b). The force feedback is applied to the user,

guiding them along the desired trajectory. The 3 DOF haptic device outputs three

Cartesian coordinates to the inverse kinematics which determine the six joint angles

configuration to reach the desired location while constraining the entry point. Thus,

the 3 DOF haptic device is can be used to control the 6 DOF robotic manipulator.

Given a set of reference trajectories, the potential field forces can now be used to

provide haptic assistance based on the tooltip location. As the user controls the

robot’s tooltip using a haptic device, they receive feedback based on its location to

help direct them towards the optimal path. The force field does not control the robot

directly and a human is kept in full control of the actual robot position.

2.4 Experimental Validation

The experimental setup is shown in Fig. 2.4(a). The setup consists of a 3-DOF (degree

of freedom) haptic device (the Novint Falcon); a 6-DOF robotic manipulator, the

Meca500R from Mecademic (Montreal, CA); and a phantom kidney kindly provided

by Marion Surgical. The outside of the phantom kidney consists of a hard plastic

casing that is open at the top and has a clear acrylic pane in the front, while the

kidney consists of soft silicone. At the centre front of the kidney there is an opening

through the silicone from the top into the kidney, through which users are expected

to enter the kidney model. The resulting path is shown in Fig. 2.4(a), between points

± ². The same kidney model was used for all experimental trials. The modified

Denavit-Hartenberg parameters used in the inverse kinematics can be found in Table

2.1 and the joint limits are summarized in Table 2.2.
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Table 2.1: Modified Denavit-Hartenberg Parameters for Meca500

i 1 2 3 4 5 6 t c unit

αi−1 0 -90 0 -90 90 -90 -90 -90 deg
ai−1 0 0 135 38 0 0 0 0 mm
di 135 0 0 120 0 70 −L −` mm
θi θ1 θ2-90 θ3 θ4 θ5 θ6 0 0 deg

The control loop used during experimental trials with haptic feedback can be seen

in Fig. 2.4(b); for those trials without haptic feedback there is simply no feedback

loop. During the user trials, the haptic device sends its 3D position to the computer

which then processes it and uses it as the desired tooltip position in the robot’s

inverse kinematics. A demonstration of the desired tool path is first executed where

the 3D Cartesian coordinates of the tooltip are collected. The tooltip information

is determined by applying the forward kinematics to the collected joint angles; this

assumes that the tool is perfectly rigid. The data from the demonstration is used

to generate the potential field that will be used to provide the haptic feedback. A

user familiar with the system provides the initial demonstration. Once the potential

field has been constructed, the robot tooltip position is input into the potential field

function to obtain the required haptic assistance force to be applied to the haptic

device. The computer uses an Intel i7 processor and GeForce RTX 2080 GPU.

Communication between the computer, the haptic device, and the robot is handled

by the Robot Operating System (ROS).

2.4.1 Joint Limit Experimental Validation

An experiment is performed to validate the effectiveness of the proposed constrained

inverse kinematics. Two trials need to be conducted to observe the effects of the

joint limits. The first only uses the default joint limits of the manipulator (see Table

2.2, Default rows), these limits are determined by the manufacturer based on avoiding

collisions or the rotational limit of the motors used when constructing the manipulator.

During the second experiment, joint 1 is further limited (see Table 2.2, Modified rows)

from −3.05 to 3.05 rad to −1 to 0.4 rad to demonstrate the response of the inverse
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(a) Experimental set-up used to perform the user trials with the robotic arm, the haptic device and
the phantom kidney

(b) Control loop used during experiments

Figure 2.4: Experimental setup (a), does not depict a clinical setting, rather represents the
equipment and relative position used during the user trials including ¬ the haptic device, ­

the robot, ® the kidney model, ¯ phantom kidney stones in the kidney model, ° the tool
used during experiments, ± the tooltip, ² the constrained point along the tool; (b) shows
a general loop of how the system operates and provides haptic feedback to the user based
on the robot’s position.
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Table 2.2: Robot joint limits given in radians for the joint limit validation experiments

joint i 1 2 3 4 5 6
Default θ`i -3.05 -1.22 -2.36 -2.97 -2.01 -π
Default θui 3.05 1.57 1.22 2.97 2.01 π
Modified θ`i -1.00 -1.22 -2.36 -2.97 -2.01 -π
Modified θui 0.4 1.57 1.22 2.97 2.01 π

kinematics as a particular joint approaches its limit.

The tooltip reference trajectory during these experiments is a path defined such that

under the Default joint constraints the joints do not reach their limits. The trajectory

can be found in the bottom right of Fig. 2.5.

Fig. 2.5 shows that as a joint approaches its limit, it begins to saturate. To achieve

the desired position, the inverse kinematics finds an alternative joint configuration to

compensate for the limited joint. It can be noted that the constrained and uncon-

strained angles are initially the same, and as time goes on the angles of each joint

begin to change relative to the original; thus, compensating for the limitation imposed

on joint 1.

2.4.2 Constrained Workspace Evaluation

The second set of evaluations simulated the reachable workspace inside the kidney

model. The constrained tooltip workspace was determined by considering the phan-

tom kidney volume and determining which points within it are achievable when the

RCM is set at the entry point. The previously validated inverse kinematics was used

to attempt to reach points within the phantom kidney volume. This data was used

to create the tooltip workspace shown in Fig. 2.6.

The workspace shown considers a tooltip position in the robot’s workspace when the

angle between the tool and the surface of the kidney is no less than 20◦. All of the

axes and coordinates are given relative to the robot’s reference frame which considers

the origin to be at the centre of the robot’s base.

As can be seen, most of the kidney volume can be accessed through the same entry
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Figure 2.5: The results from the constrained inverse kinematics. In the 2D graphs, a dashed
line depicts the joint angle when no additional joint constraints were added, a dotted line
depicts the joint angles after an additional joint limit was applied to joint 1, and a solid
grey line shows the added joint constraint. In the 3D plot, the trajectory of the experiment
is shown.

41



-100 -50 0 50 100

0

20

40

60

80

100

120

140

160

180

200

y-axis (mm)

z-
ax

is
 (

m
m

)

Depth

140 mm

148 mm

156 mm

164 mm

172 mm

180 mm

188 mm

196 mm

200 mm

(a) tooltip constrained workspace, considering the phantom-
kidney volume.

140 160 180 200

-80

-60

-40

-20

0

20

40

60

80

100

x-axis (mm)

y-
ax

is
 (

m
m

)

(b) Contour plot of the top
surface of the workspace.

Figure 2.6: The above plots show the workspace of the constrained tool within the phantom
kidney. On the left, plot (a), is a plot of the outline of the workspace (in red), with contours
(ranging from red to blue) included for the top surface as it changes depending on depth.
While plot (b) depicts the contour of the workspace surface in the x-y plane.

point. The peak of the workspace (yellow region of the contour plot) is the location of

the entry point. There is an additional concavity in the workspace behind the entry

point; this is due to the kinematic constraints of the robot.

2.4.3 Experimental Scenarios for User Trials

Three different experiments were performed to validate the functionality of the system.

They were done both with and without haptic feedback. Participants have a full view

of the phantom kidney and robot arm during all of the experimental trials. There

were sixteen participants, 12 males, 4 females ranging in age from 18 to 31 with the

average age being 24. No exclusion criteria are used to disqualify participants. The

participants also do not have prior knowledge of the experimental setup or procedure.
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They are separated into 3 groups. The participants in each group were exclusive

to that group and only provided data for their assigned group. Each participant

completes 5 trials in total, the first 3 trials are considered training trials while the last

2 trials are used to evaluate the performance of each group. Participants performed

all 5 of their trials consecutively with no significant breaks in between trials. Every

user completed the same scenario in each trial; the goal in each trial is to reach a

particular kidney stone which is in the same location for all experimental trials. The

user who provided the demonstration data for the potential field was not a participant

in the actual tests; they only provided the demonstration data.

Group 1 (6 participants): The first group performed all 5 trials without any haptic

assistance. The data collected from the last two of these trials is the control data to

compare the other groups against.

Group 2 (5 participants): The second group had haptic feedback during all 5 trials.

This provided information on the effectiveness of haptic assistance when compared to

those without it.

Group 3 (5 participants): Finally, the third group completed their 3 training rounds

with the haptic assistance and then two evaluation trials without assistance. This

was done to evaluate how well participants learned from the haptic assistance and

to analyze if there were any lasting improvements in skill compared to those without

haptic feedback.

The stiffness of the potential field used to derive the haptic feedback was kept constant

during all trials.

2.4.4 Experimental Procedure for User Trials

Users are expected to use the haptic device to control the six DOF robotic manipula-

tor. A sheath located on the top surface of the kidney model is the entry point into

the tissue ² in Fig. 2.4(a). Users were requested to manipulate the tooltip through

the sheath towards the phantom kidney stones ¯ in Fig. 2.4(a). The procedure had
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(b) User error and the haptic feedback.

Figure 2.7: Plot (a) provides an example of haptic feedback provided to the user during
one of their user trials; the optimal trajectory is shown as the solid black line, the user’s
trajectory is the dark grey dotted line, and the haptic feedback are light grey arrows. The
bottom plot (b) exhibits the absolute error between the user’s trajectory and the optimal
path as the dotted black line (its y-axis is on the left), while the magnitude of the haptic
feedback is given as a grey line (its y-axis is on the right).

3 phases:

1. The tool was initially located outside of the kidney model. During this phase,

the constrained point was just above the tooltip and was moved along with

it such that the tool remains vertical. The 3D position of the haptic device

controlled the position of the tooltip;

2. Once the user had positioned the tooltip inside the sheath, the user pressed a

button and the tooltip location was recorded as the entry point in the tissue.

The constrained point was then fixed and assigned the recorded entry point

position.

3. The user further manoeuvred the tooltip towards the kidney stones. The 3D

position of the haptic device controlled the 3D position of the tooltip while the

constrained inverse kinematics ensured that the tool shaft passed through the

constrained point.

An example of the haptic feedback provided to a user is shown in Fig. 2.7. In Fig.
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2.7(a), the haptic feedback (grey arrows) is always directed towards the optimal path

(the black solid line). Plot (b) shows the absolute error between the user’s trajectory

and the optimal path.

The magnitude of the applied haptic feedback was roughly proportional to the error.

Due to how the potential field was constructed, with a slight pull along the optimal

trajectory and varying spatial stiffness, the haptic feedback was similar to but not

perfectly proportional to the user’s error. When the user is in phase 1, moving towards

the entry point, the haptic feedback provided should feel like a funnel due to the

stiffness of the potential field being kept low and linearly increased up to the entry

point. As the stiffness increases, larger force feedback is felt when the user diverges

from the ideal path. At the entry point and through the flesh of the kidney model,

the stiffness was kept constant; this is the highest stiffness used when generating the

force feedback. While inside the kidney, phase 3, the feedback resembles a tube-like

structure with relatively firm walls. The stiffness is linearly decreased somewhat once

the tooltip has passed through the sheath, then the stiffness is constant inside the

kidney.

2.4.5 Assessment Criteria for User Trials

Six different metrics are used to compare the experimental results between groups of

participants. These metrics are largely based on those described in [89], which uses

a set of evaluation criteria during teleoperation to assess a user’s skill level for robot

assisted minimally invasive surgery.

To begin, let the collected data points of the tooltip be ξt ∈ IR3×M where M is

the total number of collected data points for one trial, now the mth column can be

represented by:

ξmt =
[

0
tp1

0
tp2

0
tp3
]T
. (2.26)

The 5 assessment criteria can now be defined as:

Criterion 1 is the time to complete task, ttot, i.e., the total time needed to reach the
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goal;

Criterion 2 is the distance the tooltip travels, i.e., the path length ξL, given by:

ξL =
M∑
m=2
|ξmt − ξm−1

t |, (2.27)

where the magnitude of a vector
[
ξmt − ξm−1

t

]
is given as:

|ξmt − ξm−1
t | =

√(
ξmt − ξm−1

t

)T (
ξmt − ξm−1

t

)
. (2.28)

The magnitude of the tooltip’s velocity ν ∈ IR1×M at every point can be computed as

the first time derivative of ξt by:

νm =
∣∣∣∣∣ξ
m+1
t − ξm−1

t

2δt

∣∣∣∣∣ ∀m ∈ 1 . . .M, (2.29)

where δt is the time step from one data-point to the next, assuming the time step is

constant for all data-points.

Criterion 3 can now be defined as the average velocity νµ, i.e.:

νµ = ν = 1
M

M∑
m=1

νm. (2.30)

The magnitude of motion acceleration a ∈ IR1×M can be defined similar to velocity

with the main difference being that acceleration requires the second time derivative of

ξt as opposed to the first time derivative. Therefore, the vector of motion acceleration

magnitudes can be computed by:

am =
∣∣∣∣νm+1 − νm−1

2δt

∣∣∣∣ ∀m ∈ 1 . . .M, (2.31)

Criterion 4 is defined as the mean acceleration, that is:

aµ = a = 1
M

M∑
m=1

am (2.32)
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Figure 2.8: An example of a user’s actual trajectory compared with their idealized trajectory.
The dashed blue line is the idealized trajectory while the dotted black line is a user’s actual
trajectory during one trial.

Criterion 5 is related to the user’s deviation from an idealized version of their tra-

jectory. The idealized version ξI removes small redundancies and tremors leaving a

close approximation to what the user intended to do. It is created by applying the

Savitzky-Golay filter, which is a digital filter that employs a moving window and fits a

polynomial curve to sets of data points within the window in order to filter out noise.

The Savitzky-Golay filter is employed here to generate a smooth version of a user’s

trajectory so deviation from their intended path can be calculated. An example of

an filtered trajectory can be seen in Fig. 2.8, where the smooth blue line is the ideal

smoothed trajectory based on the actual trajectory (the dotted black line).

Using the idealized version of the path the magnitude of the user’s deviation ε ∈ IR1×M

for every point is defined as:

εm =
∣∣∣ξmt − ξiI ∣∣∣ ∀m ∈ 1 . . .M, (2.33)
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where ξiI is the closest point along ξI . The average deviation is given by:

εµ = ε = 1
M

M∑
m=1

εm. (2.34)

Criterion 6 is the targeting accuracy for each user. This considers the approximate

location of the phantom calculi ξc and finds the closest data point from the user trial.

As such the targeting accuracy TA can be defined as:

TA =
∣∣∣ξc − ξkt ∣∣∣ , (2.35)

where ∃k ∈M 3
∣∣∣ξc − ξkt ∣∣∣ ≤ |ξc − ξmt | ∀m ∈M .

These criteria can now be used to evaluate the performance of the three different

experimental groups to determine the effectiveness of the haptic feedback on perfor-

mance, skill acquisition, and path consistency between experimental trials.

2.5 Results and Discussion

The results from the last two trials of every user can be found in Fig. 2.9 as box

plots. At the top left of Fig. 2.9 is the total time to complete each trial, the red lines

indicate the median time for each group to complete their evaluation trials. The blue

boxes span from the first quartile to the third quartile and indicate a median of the

lower and upper half of the dataset respectively, this box describes the range of most

participants times. The whiskers on each box reach the maximum and minimum times

that fall within the interquartile range. This first evaluation criterion does not have

outliers which would be marked by a red plus sign. Outlying datapoints are those

outside of the interquartile range, the boxplots for average acceleration and targeting

accuracy both have an outlier in group 3.

Second from the top on the left, is the path length as determined by (2.27). At

the bottom left of the figure is (2.30) which is the average velocity per trial between

the user’s actual motion and the idealized version of their trajectory. At the top
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Figure 2.9: Box plots of the experimental results for the last two trials of every user. The
data is separated into the three groups of users, those who received no haptic assistance
(‘No Haptics’), those who completed it with haptic assistance (‘Haptics’), and those who
completed their training rounds with haptic assistance but the evaluation rounds without
haptic assistance (‘Trained with Haptics’).

right of the figure is the average acceleration (2.32) per trial. Average deviation is

the centre plot on the right in Fig. 2.9, which was calculated in (2.34). Lastly, the

targeting accuracy is shown on the bottom right; the results are similar between each

of the three groups. However, more consistent targeting was achieved by group 3, this

suggests that the training with haptics leads to a much better understanding of the

target position and the particular motion required to reach it. It should be noted that

while the tool was considered to be rigid; it did bend when approaching the phantom

calculi, which can lead to less accurate results when comparing the tooltip location

to a static location in space. The average and standard deviation for each assessment

criterion per group are summarized in Table 2.3. For each evaluation criteria the table
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Table 2.3: Average and standard deviation for each assessment criterion and targeting ac-
curacy (denoted TA)

unit Group 1 Group 2 Group 3

ttot sec 52.07± 28.09 32.98± 10.89 44.49± 16.83
ξL mm 257.65± 64.92 178.32± 29.81 232.97± 58.84
νµ mm/s 5.28± 1.91 5.32± 1.49 5.31± 2.01
aµ mm/s2 22.58± 8.65 21.66± 5.12 24.53± 11.46
εµ mm 1.63± 0.32 1.28± 0.33 1.48± 0.23
TA mm 1.13± 3.03 2.22± 1.26 0.72± 0.94

contains the mean for the respective group along with its standard deviation.

2.5.1 Discussion

The experimental results obtained from a total of 32 trials and 3 independent groups

reveal that, overall, users who receive haptic assistance perform better on average

according to the assessment criteria specified earlier. The results further suggest that

haptics is an effective way of developing surgical skills in the context of teleoperated

PCNL.

The most evident benefit of haptic assistance can be seen in the time taken to complete

the procedure as shown in Fig. 2.9. The addition of haptic feedback (group 2) made

all trials more consistent when compared to those without haptic feedback (group 1).

This claim is further supported by the fact that group 3 outperformed group 1. The

results indicate that the subjects from group 3, who are trained with haptic feedback

and are evaluated without it, did better than those who never experienced the haptic

assistance. This suggests that group 3 demonstrates the degree to which users can

learn from the haptic feedback.

Path length is another indicator of the effectiveness of the haptic assistance on user

performance. Both the mean and the variability of the path length decrease with

haptic assistance. Additionally, the lower median and variability of group 3 compared

to group 1 is recurrent evidence of learning from the haptic assistance.
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The mean deviation from the idealized path for each user trial follows the same trends

as described for time and path length. A lower average deviation and range suggests

that fewer redundant motions occurred during the procedure. It further implies that

the path taken is smoother compared to those without haptic assistance or training

(such as group 1). Finally, the average acceleration and velocity decrease with hap-

tic assistance and training, which is another indication of smoother trajectories and

motion during the procedure.

The targeting accuracy criterion indicates the effectiveness of learning from the hap-

tic feedback. Once the haptic feedback was removed users were able to reach the

phantom kidney stone with very consistent results. Group 2, who had haptics during

every trial, did manage to target the kidney stone with slightly higher accuracy than

the participants in group 1. Although participants in group 1 have a lower median

targeting accuracy, they have a standard deviation larger than double the standard

deviation of group 2, as can be seen in table 2.3.

2.6 Concluding Remarks

Although PCNL is the leading procedure used for the management of urinary calculi

for large and irregularly shaped urinary stones, it remains a challenging procedure

to learn and perform efficiently. A fully automated system would pose an increased

risk to patients due to unmodelled aspects of the surgical environment. In addi-

tion, they require accurate alignment of the optimal path to patient anatomy. This

challenge is considered in [58], they found a 15.8 mm position error and 4.12◦ ori-

entation error from alignment. This chapter introduces a collaborative human-robot

teleoperative training framework to assist the surgeon and teach surgical skills. It

has two integrant parts: The constrained inverse kinematics that decouples tooltip

orientation and position using a remote centre of motion, and haptic assistance from

past demonstration(s) based on data collected from the slave. This way, uncertainties

and unmodelled dynamics of the environment are accounted for and the haptic feed-

back reflects the same conditions faced by the experts demonstrating the procedure.
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Current literature primarily evaluates performance in virtual environments, while the

experiments performed here consider a cyber-physical environment. Sixteen partici-

pants took part in a total of five trials each. The participants were each placed in

one of three groups; the first group received no haptic assistance, the second group

received haptic assistance for all trials, and the third group is trained using haptic

assistance for the first three trials and completed the last two evaluation trials without

any haptic assistance.

Constraining the entry point in the kidney effectively allowed users to use a 3-DOF

device for a procedure that required 6-DOF. This allows the workload to be shared

between the surgeon and the robot while preserving the surgeon’s control over the

tool-path. This reduces the cognitive load on the surgeon during the procedure which

makes it possible for them to be more receptive towards haptic feedback [90].

It was found that the analytical joint limits functioned as anticipated; as a joint ap-

proaches a limit it begins to saturate and the inverse kinematics returns an alternative

joint configuration to reach the desired point. Experimental results obtained with hap-

tic feedback consistently have shorter path lengths, shorter time for the procedure,

a lower average deviation, and more consistent velocity and acceleration during the

procedure. The group trained with haptic assistance performed better than those

without, however, not as well as those who had haptic feedback for all trials. By

most evaluation metrics they had a worse median value and larger variability; these

problems were even more exaggerated in the group who never experienced any haptic

feedback, thereby suggesting that haptic feedback reduces redundant motions during

a procedure and can help teach inexperienced users.

While haptic feedback is beneficial for training purposes, automating the subtask of

gaining kidney access or tool steering with a robotic agent can provide necessary

precision and control to the procedure. An integral component in the autonomous

execution of a task is in the trajectory required for execution. This is particularly

significant when considering surgical procedures such as PCNL.
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AS DESCRIBED in Chapter 1, inadequate tool steering leads to a higher

chance of complications and increased recovery times due to tissue puncture

or damage. These complications, while not fatal, lead to longer recovery times and

excessive bleeding [17–20]. Thus, partially or fully automating kidney access through

robotic assistance can improve the procedure success rates and increase patient safety

[91,92].

Path planning is integral to any automated surgical procedure. A carefully planned

path allows the robot to perform its task effectively and precisely with minimal risks

to the outcome of a procedure. There are a few common traits of a desirable path

regardless of application, such as being relatively short, smooth, and avoiding obsta-

cles. During PCNL (percutaneous nephrolithotomy) specifically, the ideal path is the

one that provides access to the kidney while avoiding surrounding tissue and other

anatomical structures that are at risk of unnecessary puncture due to their proximity

to the kidney. It is also desirable to reduce tissue damage, which can be quantified as

reducing the overall tissue displacement for a planned trajectory. While the literature

for path planning in robotic surgery is extensive, little research has been done for

PCNL path planning. PCNL differs from some of these procedures including in the

assumptions made during the planning process such as that the tool is rigid through-

out the procedure and that the tool-tissue interaction mostly occurs along the entry

path [26].

To address these issues, a novel multi-objective path planner for autonomous kidney

stone access during PCNL is presented in this chapter. NSGA-II is proposed to plan

a B-spline curve through a set of anchor points that represents the desired tooltip tra-

jectory from the entry point to the stone location. The multi-objective non-dominated

sorting genetic algorithm II (NSGA-II) is proposed to plan a B-spline curve that will

be used as the tool trajectory during PCNL. Here, NSGA-II is used to determine the

anchor point locations for a uniform B-spline curve. The optimal path minimizes path

length, tissue potential energy due to tissue compression, and path smoothness while

maximizing the distance to obstacles. The outputs of the algorithm are the optimal
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spline coefficients.

This chapter is organized as follows. Section 3.1 provides a brief overview of docu-

mented path planning algorithms in robotic surgery and section 3.2 introduces the

B-splines and NSGA-II optimizer. The multi-objective optimization is first evalu-

ated through a set of simulations in Sec. 3.3 and demonstrates the effectiveness of

the path planning for a variety of goal locations within the kidney. The simulation

shows that the planned trajectories result in minimal tissue deformation, are relatively

short and smooth, and do not collide with the internal kidney structures. Finally, the

trajectories are put into practice through physical experiments to demonstrate their

applicability, this is discussed further in Sec. 3.4.

3.1 PCNL Optimal Path Planning

A wide variety of path planning algorithms have been applied to path planning in

robotic surgery. These algorithms include several classical methods as well as evolu-

tionary approaches. Some approaches are designed for real-time path planning where

only the tool’s immediate surroundings and the desired goal location are required.

These include artificial potential fields, collision cones, vector field histograms, and

dynamic windows [93,94]. Real-time path planners are fast enough to provide quick re-

sponses during real world scenarios such as autonomous vehicle path planning. They

are computationally effective, however, they are best suited to local path planning

problems since they do not necessarily return an optimal path, but rather a feasible

path that is primarily concerned with obstacle avoidance. Other planning methods,

such as roadmap and grid-based approaches, are used to describe the environment

as a whole, including obstacles and collision-free paths, and are frequently used in

conjunction with additional search methods such as A* or an evolutionary approach

to return an ideal path [93, 94].

Evolutionary approaches to path planning are fast and often computationally effi-

cient. For multi-objective optimization problems, metaheuristic approaches are gen-
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erally preferred as they produce a better spread along the Pareto front and more

non-dominated solutions compared with classical optimization approaches. Evolu-

tionary optimizers tend to search the variable and objective spaces more than classical

approaches, although this is very dependant on the algorithms in use. Evolutionary

optimizers include a wide variety of swarm optimizers such as particle swarm optimiza-

tion, ant colony optimization, bacterial foraging, bee colony optimization, and several

lesser-known swarm algorithms [93,94]. Alternatively, genetic algorithms, fuzzy logic,

and neural networks can also be used for path planning.

Surgical path planning must take into account a variety of objectives, thus, a multi-

objective optimizer is a natural choice for the task of planning an autonomous tra-

jectory for PCNL. The algorithm must consider multiple objectives to plan an ideal

path and provide not one but multiple paths that are safe and effective in reaching

the kidney stones. Providing multiple suitable optimized paths allowing a medical

professional to make the decision for the final tradeoff of objectives which ensures the

safety of the procedure and keeps a human in the loop. A frequently used and highly

effective multi-objective algorithm, NSGA-II is well-known for its computational effi-

ciency and performance. For example, in [95], NSGA-II is used to optimize the path

planning task for an unspecified autonomous robot, where the paths are represented

using splines to provide smooth trajectories.

In multi-objective optimizers, a high number of optimization variables can increase the

computational time significantly. Therefore, to limit the dimension and the complexity

of the problem, it is preferable if only a few coordinates are necessary to define the

paths. For example, to maintain a smooth trajectory, a curve can be interpolated

based on anchor points created by NSGA-II. Alternatively, B-splines can be used to

represent these curves using only a few anchor points.

To determine a solution for the optimal tool trajectory, multiple factors need to be

considered. Some of these factors may negatively impact one another requiring a

trade-off between them. A single objective optimizer could be used here by imple-

menting a weighted sum of objectives, however, these algorithms would only return
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a single solution and when multiple actual cost functions are present it is more likely

to become trapped in local minima, which do not allow for wider exploration. Fur-

thermore, this removes a human from selecting the actual path that will be executed,

if the resulting path is determined to not be suitable the algorithm may need to be

run several times. Another consideration for weighted sums is that nuances regarding

the individual performance of cost functions are lost which can negatively impact the

resulting trajectory. A more suitable approach for problems with multiple objectives

is a multi-objective optimizer. A multi-objective optimization algorithm finds solu-

tions that satisfy each of the objectives; it returns a set of solutions that optimizes

each objective to a varying degree rather than a single solution that it believes to be

optimal. This has the added benefit of keeping a human in the loop of the procedure

planning process when applied to PCNL. Since a medical expert would make the final

selection for which path to choose based on their own expertise. This ensures the

procedure’s safety is maintained since a medical expert could determine that none of

the proposed solutions are suitable.

Within multi-objective optimization, the solution set returned at the end should be

the set of non-dominated solutions i.e., the Pareto front. A Pareto front is the subset

of solutions that are not dominated by other solutions present. A solution is con-

sidered dominated if it is worse with respect to all objectives compared to another

member. The set of solutions which are not dominated by any of the other popu-

lation members are returned as the final results from the multi-objective optimizer.

Multi-objective optimizers consider each objective separately rather than a weighted

sum of the objectives. The task at hand is to find the Pareto optimal solutions, such

that the solutions can be scrutinized and selected for execution. From the solution

set returned by the optimizer, the user has the ability to determine an acceptable

trade-off when selecting a solution.

Applying a multi-objective optimizer to path planning first requires a discretization of

the problem in order for the optimizer to generate possible optimal paths. A B-spline

representation of a trajectory requires a minimal number of control points, also known
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as anchor points, to define the curve.

3.2 PCNL Trajectory B-spline Representation

B-splines are well-suited to obstacle avoidance path planning tasks as they are com-

putationally efficient and able to provide smooth continuous trajectories from only a

few anchor points. B-splines are a piece-wise polynomial function constructed from a

set of basis functions given as

Ni,j(t) = t− ti
ti+j − ti

Ni,j−1(t) + ti+j+1 − t
ti+j+1 − ti+1

Ni+1,j−1(t) (3.1)

where j = 1, 2, . . . , d, and d is the degree of the B-spline being constructed. Basis

functions construct the underlying curves that will be multiplied by the anchor points

and added together to create the overall B-spline. For a first degree spline the basis

functions are straight lines, when multiplied by the anchor points the resulting B-

spline is a set of straight lines connecting each anchor point, while the basis functions

for second degree splines are parabolas. Lower degree splines remain closer to the an-

chor points used to generate them but are less smooth than higher order splines which

tend to follow their original anchor points less directly. Additionally, the number of

anchors and knots used to generate various degree B-splines differs, this is discussed

in more detail later.

The degree of the spline is calculated with

d = m− n− 1 (3.2)

for a set of n+ 1 control points and a knot vector t ∈ R1×m+1. When j = 0 the basis

function takes the form of

Ni,0 =


1 ti ≤ t ≤ ti+1

0 otherwise
(3.3)
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where ti is the ith entry in the knot vector which must be a non-decreasing series and

each ti ∈ [0, 1]. The final curve is then calculated as

C(t) =
n∑
i=1

PiNi,d(t), (3.4)

where Pi ∈ RD are the coordinates of control point i for the dimension D, and Ni,d(t)

is the corresponding basis function.

Splines are also well-suited to be used within an optimizer, as a relatively complex

curve requires only a few control points P to define it, thus keeping the dimensionality

of the problem low. A 3rd degree B-spline while be used as it is still relatively smooth,

and each of the anchor points are able to more directly control the final curve compared

to a higher order spline. The objective of the optimizer is therefore to determine the

coordinates of a limited number of control points such that the path created by them

optimizes for a set of pre-defined cost functions.

3.2.1 Mutli-objective control point optimization cost func-

tions

NSGA-II uses four objectives when planning the ideal path for PCNL:

1) Path Length is to be minimized. For a 2 dimensional scenario C(t) contains the

piecewise equations x(t) and y(t) which describe the x and y coordinates along the

curve. Thus the path length can be defined as

f1 =
∫ b

a

√
1 +

(
y′

x′

)2
dx (3.5)

where x′ = dx
dt
, y′ = dy

dt
and a ∈ RD and b ∈ RD are the start and end points of the

path respectively and C(t) is the equation of path created using B-splines.

2) Obstacle Distance describes the distance between the tool shaft and obstacles

through the entire path trajectory. Maximizing the distance to an obstacle is impor-

tant to avoid collisions and keep the surgical tool as far away as possible from sensitive
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tissue during the procedure. To this end, the patient anatomy can be discretized as

a set of voxels or pixels depending on the dimension of the problem. The centre of

each voxel or pixel is stored in a matrix T ∈ RD×κ where κ is the total number of

points used to describe the obstacle space. The distance to obstacles along the path

must be maximized. First the path C(t) is resampled such that there is a discrete set

of evenly spaced points describing the path, this is denoted CR(j) ∈ RD×` where ` is

the total number of points used to describe the re-sampled path. The total distance

to closest obstacles along the path can now be quantified as

f2 =
∑̀
j=1

min ||CR(j)− T ||. (3.6)

It may be beneficial to consider the distance of the entire tool to its surrounding ob-

stacles, with the tool pose known for each point along CR(j), (3.6) must be calculated

and summed for the entire tool shaft. Thus (3.6) becomes

f2 =
L∑
z=0

∑̀
j=1

min ||CRT (j, i)− T ||, (3.7)

where L is the total length of the tool and CRT (j, z) is a point at a distance z along

the tool shaft for the jth point along the resampled path CR(j); and when z = L

CRT (j, L) = CR(j).

3) Path Smoothness is to be minimized to ensure that the path is smooth and free

from unnecessary jerk. The smoothness of the path further ensures patient safety by

minimizing rapid changes in motion that could cause additional tissue damage. The

smoothness is quantified by

f3 =
∫ b

a

(Q(t)/dt)2
√
x′ 2 + y′ 2

dt (3.8)

where

Q(t) = |x
′y′′ − y′x′′|

(x′ 2 + y′ 2)3/2
; (3.9)

here x′′ = d2x
dt2

and y′′ = d2y
dt2

[96].
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4) Tissue Compression Energy is a measure of how much energy is stored in

the patient tissue due to its compression for the entire desired tool trajectory. During

PCNL, it is assumed that the tissue compression occurs along the tool’s entry point in

the kidney only. The tissue compression energy for a single point along the trajectory

is given as

U(d) = 1
2K

∫ z2

z1
s(z)2dz, (3.10)

where z1 and z2 are the entry and exit depths along the tool axis respectively and

s(d, z) =


(z cos θ + xt − xOP (z)) if z1 ≤ z ≤ z2

0 otherwise,
(3.11)

where, as shown in Fig. 3.1(a), z is the distance along the tool axis, xt is the horizontal

coordinate of the tool base (where it is attached to the robot end-effector), θ is the

angle of the tool, and xOP (z) is an equation describing the original entry path into

the kidney.

The optimization variables are the coordinates for the anchor points, these anchor

points are used in addition to the goal point and three constant points used to define

a straight entry trajectory when creating the B-spline. Moving forward, the anchor

points created by the optimization algorithm may be referred to as the internal an-

chors. If five internal anchors are used in a 2-dimensional scenario, there is a total of

10 optimization variables (D×number of internal anchors).

A curve is generated for each of these population members and is then evaluated on the

four cost functions described above. The evaluation of the cost functions requires that

the tool pose is known. During autonomous PCNL kidney access, the tool is attached

to the robot arm at its end-effector and the robot steers the tool from outside the

tissue such that the tip follows the path to the end, that is, the location of the calculi.

The inverse kinematics is presented in Chapter 2. This is simulated during NSGA-II

to evaluate the cost functions for every iteration along the discretized path.

The results of the cost functions determine the performance of each individual and
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(a) (b)

Figure 3.1: Automated robotic PCNL overview, (a) shows a robot arm holding a nephro-
scope and how the tool enters the kidney, (b) shows 4 predefined constant control points
and a possible B-spline created between these points leading to the kidney stone.

affect the chance of a population member being used to generate the child population

for the next iteration of the algorithm. The initial population is randomly generated,

while each subsequent iteration of NSGA-II applies crossover and mutation schemes

to the previous population to generate a new one. NSGA-II iterates until a stopping

criterion is reached, in this case, a specified number of iterations. Once NSGA-II

reaches the desired number of iterations, it returns the final population, the size of

the final population is the same as that of the initial population or smaller, because

the algorithm rejects solutions from the final set if they are not considered Pareto

optimal.

Having defined all objective functions, let us shift the focus to the multi-objective

optimizer.

62



3.2.2 Multi-objective optimizer outline

NSGA-II is a widely used and recognized multi-objective optimization algorithm. It

operates on the principle of evolution, a population of potential solutions is evaluated

using fitness functions and the highest-scoring members are more likely to produce the

next child generation. The algorithm iterates until stopping criteria are met, typically

by evaluating convergence to the Pareto front.

Population members are altered to explore the potential combinations of parame-

ters. This is achieved using the fundamental transformations of a genetic algorithm:

crossover and mutation. Crossover is performed first, where two parent population

members (np1,np2) are used to create the two child members (nc1,nc2) using the

following equations [97]:

nc1 = 0.5((1−B)np1 + (1 +B)np2) (3.12)

nc2 = 0.5((1 +B)np1 + (1−B)np2) (3.13)

where B is calculated using a random variable 0 ≤ µc ≤ 1 for each parameter and the

user-defined crossover rate ζc as shown in [97–100], it is determined as follows:

B =


(2µc)1/(ζc+1) if µc ≤ 0.5

(2(1− µc))1/(ζc+1) if µc > 0.5.
(3.14)

Polynomial mutation is then applied to the child population [98]. Mutation is achieved

by using a random variable 0 ≤ µm ≤ 1 for each parameter and the user-defined rate

ζm. If the random variable µm ≤ 0.5, the update variable is evaluated as [98],

δl = (2µm)(1/(ζm+1)) − 1 (3.15)
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and the expression for the mutation becomes [98],

nc1 = nc1 + δl(nc1 − nUB) (3.16)

nc2 = nc2 + δl(nc2 − nUB); (3.17)

Alternatively, should µm > 0.5 then the update variable becomes,

δr = 1− (2(1− µm))(1/(ζm+1)) (3.18)

and the children are mutated using,

nc1 = nc1 + δr(nLB − nc1) (3.19)

nc2 = nc2 + δr(nLB − nc2) (3.20)

assuming that there are upper nUB and lower nLB bounds that a parameter may take.

Through an iteration of the optimizer, each population member has its fitness deter-

mined by evaluating the cost functions. The maximum and minimum fitness values for

each cost function is used to normalize the fitness values of the population members.

The normalization process remaps the maximum and minimum of a cost function to

1 and 0 respectively. Thus, the population member with the lowest value for the cost

function being considered has a value of zero once it is normalized, while the popu-

lation member with the highest cost function value now has a one in its place. All

population members that do not have the highest or lowest cost function value have

their fitness value linearly remapped between 0 and 1 based on the overall maximum

and minimum values for the specified fitness function.

When a larger number of objectives are required, the process can converge on a local

minimum, where the true Pareto front is not well represented. The authors in [101]
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(b) NSGA-II algorithm process

Figure 3.2: A non-dominated solution set when minimizing two cost functions f1 and f2
is shown by black dots in (a), dominated solutions are shown as white circles with black
borders, and (b) depicts a flow-chart for the non-RPD-dominated NSGA-II algorithm

propose implementing reference point dominance (RPD). The algorithm creates evenly

distributed points along the objective space hyperplane, applies additional penalties

when determining the non-dominated solutions. Penalties are determined by evaluat-

ing the density of population members near the reference points and convergence to

the ideal point. The RP-fronts are determined using the Euclidean distance

s1(n) = ‖f̃(n)TRk‖
‖Rk‖

(3.21)

and the normal distance

s2(n) =
∥∥∥∥∥f̃(n)− s1(n)

(
Rk

‖Rk‖

)∥∥∥∥∥ (3.22)

with f̃(n) being the normalized objective function, and Rk is an M-dimensional di-

rection vector [101], these can be evaluated to their scalar value for every member in

the population.

Including the parameters described in (3.21) and (3.22) in the algorithm ensures

good convergence and diversity of the potential solutions respectively. For further

information on the RPD algorithm refer to [101].

Using these distances, the Pareto front can be determined. A visual example of a
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Pareto front for the minimization of two cost functions is given in Fig. 3.2(a). The

child population is constructed from Pareto front solutions. The process repeats until

the stopping criteria of the optimizer is met, then the process is complete. The

stopping criteria, at a minimum, consists of a maximum number of iterations but can

also check the number of fitness function calls, change in the variables for convergence,

or fitness level. The full sequence of the optimizer is shown in Fig. 3.2(b).

3.3 Simulation Results

The proposed path planning method is first evaluated through a set of simulations.

The simulations are performed for a simplified 2D version of the kidney and its

anatomy, based on the phantom kidney used for the physical experiments in Chapter

2, and in a later section, see Fig. 3.6. Additionally, three different goal points are

considered during four scenarios, each goal is selected to demonstrate the algorithm’s

ability to explore the environment.

Scenario 1: evaluates the performance of the algorithm on Goal 1 which is located

on the bottom left of the simulated kidney anatomy. No obstacles are considered

other than the kidney walls.

Scenario 2: is the same as scenario 1 with the exception that it considers Goal 2

which is located on the bottom right.

Scenario 3: considers Goal 3, located on the top left.

Scenario 4: includes an additional obstacle to demonstrate the optimizer’s ability

to plan around obstacles, it considers Goal 1.

Fig. 3.4(b)-(e) depicts each of the goals and scenarios described above with the

resulting paths from the optimization process. These simulations are performed on

an Intel i7 processor with 64 GB of RAM and GeForce RTX 2080 GPU.

During PCNL, the trajectory into the kidney is a straight path from the incision to

where it enters a calyx. To ensure this entry trajectory remains straight and that
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Figure 3.3: Example of a B-spline with a total of 9 anchor points, constant anchor points
are shown with circles, the first 3 ensure a relatively straight entry trajectory, the last one
represents the goal point. The location of the internal anchors are determined by the NSGA-
II algorithm (black dots). The degree of splines are depicted for 2nd to 6th degree splines
ranging in color from light grey to dark grey respectively.

the trajectory within the kidney is smooth and continuous along this first part of the

trajectory, the first three control points for the B-spline are constant and determined

in advance based on the desired entry trajectory. The final point for the uniform

B-spline, or the goal point for the path, is also maintained as a constant for all of the

B-splines. The NSGA-II algorithm controls the coordinates for five points between

the three points defining a straight entry path and the final goal point see Fig. 3.3.

The degree of a B-spline curve is determined by (3.2) which depends on the number

of anchor points and the size of the knot vector. The degree of the B-spline can be

increased through knot repetition at the beginning and end of the knot vector. For

example: consider a 4th degree (d = 4) B-spline curve is created through 9 anchor

points (n = 8). Equation (3.2) is rearranged as m = d + n + 1, so the knot vector

size can be determined as m = 4 + 8 + 1 = 13 and the knots at the beginning and

end are repeated d + 1 times leaving 4 internal knots. It is important to consider

the number of internal knots tinternal ∈ R1×q necessary when using knot multiplicity

q = m − 2d − 1 and q ≥ 0. Thus for a 4th degree B-spline curve, at least 5 control

points are necessary (q = 0).

For the 2D scenario with 5 anchor points, there will be a total of 10 variables that
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Table 3.1: NSGA-II algorithm parameters

Simulation parameters Workspace [mm]
Dimension 10 x range y range
Iterations 500
Number of Objectives 4 min -60 min 40
Population Size 60 max 60 max 80

NSGA-II controls (the x and y coordinates for each point). The NSGA-II simulation

parameters used during the optimization process, are found in Table 3.1.

The results from the NSGA-II optimization for each simulation scenario can be seen

in Fig. 3.4. In subfigure (a) is an example of a random initial population. Subfigures

(b) to (d) show the final Pareto optimal solutions for each goal point. As it can be

seen, the Pareto optimal solutions are all smooth curves that are relatively short and

do not collide with any obstacles. Subfigure (e) shows the Pareto optimal solution

for scenario 4, i.e., goal 1 when an obstacle is present, demonstrating the algorithm’s

ability to create paths that still navigate around more complex surroundings with

smooth trajectories.

From the Pareto optimal solution set, one member must be chosen to execute the

task. This is a benefit of using a multi-objective optimizer that returns multiple

solutions as it keeps a human in the loop of the planning procedure. Since all of

the cost function values have been optimized to some degree, the generated solutions

all represent acceptable trajectories. From these solutions, the operator can discard

paths that are closer to obstacles than others, apply a maximum acceptable threshold

to tissue compression, etc.

The cost function values are normalized relative to their respective minimums and

maximums to compare them more easily. Furthermore, three out of the four cost

functions must be minimized. For consistency, obstacle distance is inverted after

normalization, thus in table 3.2, lower values of obstacle distance are more desirable.

Selecting the optimal path from the Pareto front is then achieved in two steps. First,

a subset of the final Pareto optimal solutions is selected. This is shown in Table 3.2
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Figure 3.4: The results from NSGA-II Path planning, (a) shows an example of a randomly
initialized population, (b)–(d) are the Pareto optimal solution sets returned for scenarios 1
through 3, (e) shows the Pareto optimal solutions for scenario 4 i.e. when an obstacle is
present in the environment.
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for scenario 3. The subset is selected by applying an upper threshold of 0.65 and 0.72

to the normalized tissue energy and obstacle distance cost functions, respectively.

Following this, the cost function values for each member are compared and members

whose cost function values are too similar to a previous member are discarded. Cost

function similarity is determined by the root-mean-squared of the difference between

two members’ fitness values.

In the second step, a single solution is then selected from the subset by inspecting each

individual solution path visually, and by analyzing their cost function values. Since

all paths tend to be relatively short, the other three cost functions may be given more

weight during the decision. Obstacle distance is given priority.

Alternatively, a weighted sum could be used at this junction to automatically select

the final result. Obstacle distance would likely be given the highest weight and path

length and path smoothness would likely be given lower weights since all of the final

paths are similar in length and are shown to be very smooth. Although, using a

weighted sum takes the human out of the planning process, and this can pose a

significant risk for surgeries. Medical experts may be more familiar with what trade-

offs would be acceptable and they may be difficult to describe simply as thresholds

or weighted sums. There is also a risk that the multi-objective optimizer does not

return any paths that are suitable, either due to the random nature of the algorithm,

the particular scenario being considered, or the algorithm parameters being used.

For these reasons it is integral to maintain a human in the loop of decision making,

especially in the planning phases of a medical procedure.

The selected result for scenario 3 has been highlighted in light grey in Table 3.2

(member 32). This path is being selected since it has the second-lowest obstacle

distance and shows good results in the other cost function values. Although member

32’s highest value is the length of this path, this value is not the longest path generated

across all Pareto solutions. This indicates a good trade-off between cost functions.

The resultant tool poses required to follow each of the optimal tooltip paths from each

scenario are presented in Fig. 3.5. The tool poses determine the tissue compression
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Table 3.2: Subset of the normalized cost function values for scenario 3

Member Path Tissue Path Obstacle
length energy smoothness distance

4 0.2488 0.1471 3.130×10−10 0.4201
7 0.6501 0.0394 9.563×10−9 0.0441
8 0.3784 0.3950 1.987×10−12 0.5035
9 0.5804 0.2587 4.951×10−12 0.3939
11 0.1045 0.3088 1 0.3995
15 0.4690 0.2867 1.458×10−11 0.1650
22 0.7817 0.4025 0 0.2561
30 1 0 5.681×10−12 0
32 0.8116 0.3601 1.299×10−11 0.0004
46 0.6750 0.4377 1.464×10−13 0.6152

during the NSGA-II, they are also used to perform the physical experiments, described

in the next section. From the simulation results, both the tooltip and the tool shaft do

not intersect with the simulated obstacles. It is also worth noticing that even though

the tool shaft is not constrained to the entry point in the tissue, the optimal path

keeps the tool shaft close to its entry point to avoid tissue damage.

3.4 Experimental Evaluation

The path planning algorithm is also validated through physical trials. The paths

selected during simulations are executed using the same 6-DOF (degree of freedom)

robotic arm presented in Chapter 2 (Meca 500, Mecademic, Montréal, Canada) in

the same kidney phantom. The tool used in the physical experiments is a 218.7 mm

long square brass rod with a width of 3.2 mm. An electromagnetic tool tracking

system (Aurora, Northern Digital, Waterloo, Canada) records the tool’s tip during

the trials, see Fig. 3.6. The robot arm steers the tool base such that its tip follows

the desired path. The robot’s inverse kinematic is presented in detail in Chapter 2.

Each of the selected paths from the previous section is executed on this experimental

setup to ensure that the paths are feasible. Each path is run three times. The recorded

tooltip trajectory for each run is shown along with the reference trajectory in Fig. 3.7.
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Figure 3.5: The results of the path planning algorithm, an ideal path is selected for each
scenario and plotted in (a)–(d) above along with the tool poses generated during the path
planning process in order to reduce tissue compression. The tool poses are shown in blue
at their starts and become green as they approach the goal point.
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Figure 3.6: Experimental setup used to conduct the experiments on a phantom kidney
model. A brass rod is used as the nephroscope. The 6-degree-of-freedom robot steers the
tool base such that the tooltip follows the predefined trajectory. The tooltip location is
recorded by the electromagnetic tracking system.

While the obstacle is shown in the figure, note that it is not present in the phantom

kidney and is only considered during the planning of scenario 4.

All paths follow their reference trajectories, entering the kidney on a straight line,

thanks to the first 3 anchor points, and then following a curved line around the obstacle

towards the goal. Both the tooltip and the tool shaft successfully avoid the obstacle

and the kidney walls and the tooltip reaches the desired goal. Lateral tool motion is

also minimized by the algorithm to limit tissue compression. The increased tracking

error as the tool approaches the goal is the outcome of the assumption that the tool

is perfectly rigid, which is not the case for the brass tool used in the experiments.

Additionally, some error may be caused by electromagnetic interference in the tracking

process.
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Figure 3.7: Each of the selected paths are plotted along with the tooltip tracking results
from the physical experimental trials. Scenario 4 (the dark blue path) is the only trajectory
that needs to manoeuvre around the obstacle.

3.5 Conclusion

This chapter proposes a path planning framework for PCNL using B-spline represen-

tation with the multi-objective optimizer NSGA-II. The resulting trajectories meet

several requirements: being short and smooth while avoiding obstacles and high tissue

compression. The path planning algorithm is validated on four scenarios, demonstrat-

ing its ability to plan an appropriate trajectory given different circumstances. A single

trajectory is selected from the Pareto optimal solution set that is returned by the al-

gorithm, this selection process keeps a human in the loop of planning the procedure to

further ensure patient safety. Each of the selected trajectories is evaluated with three

physical trials, where a robot arm controls the tool and advances it along the planned

path towards the goal. The physical trials demonstrate the ability of the system to

avoid obstacles while minimizing tissue damage at the entry point.

A well-planned trajectory is key to a successful and safe autonomous procedure.
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Although, even the best-planned trajectories cannot ensure a safe procedure if the

robotic agent is unable to accurately track the desired trajectory. For rigid tools,

there is a straightforward solution. However, when considering much narrower or

more flexible tools accurately determining the tool poses is significantly more chal-

lenging.
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Chapter 4

Multi-objective Trajectory

Tracking of a Flexible Tool during

Robotic Percutaneous

Nephrolithotomy

© IEEE

Reprinted, with permission from Olivia Wilz, Brayden Kent, Ben Sainsbury, and Carlos Rossa,

Multi-objective Trajectory Tracking of a Flexible Tool during Robotic Percutaneous Nephrolitho-

tomy,

Robotics and Automation Letters, 2021. [in press], Also selected for presentation at IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021.
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THE PREVIOUS chapter presented a multi-objective path planning algorithm

for percutaneous nephrolithotomy (PCNL). Two assumptions were made in

the algorithm, first, that the tooltip position is known; second, that the tool is rigid

and straight. The above assumptions simplify the inverse kinematics of the robot sig-

nificantly: there exists a straightforward relationship between the tool’s base position

and orientation and the tooltip position. However, it is desirable to use thinner, more

flexible nephroscopes during the procedure to limit tissue damage and other possible

complications. Meaning, for the desired tooltip position, the inverse kinematics be-

comes ill-posed, as there are several robot end-effector positions and orientations that

bring the tooltip to the desired location while compensating for the tool bending.

Robotic assistance can be used to steer the tool while compensating for tool bending.

In this scenario, the surgeons take on a more supervisory role in the operating room

rather than a hands-on role. To achieve this level of autonomy, the robot must follow

the planned path exactly, relying on accurately modelling the tool-tissue interaction.

To reduce the potential for tissue trauma, using a flexible nephroscope can be bene-

ficial. Flexible nephroscopes are recommended for some morbidly obese patients and

during second-look procedures that follow PCNL [102]. They also offer additional ma-

noeuvrability within the kidney providing better stone clearance with fewer incisions.

While smaller nephroscopes are recommended for paediatric patients [6], the smaller

diameter of the nephroscope means they are more prone to bending. However, using

a flexible nephroscope poses additional challenges for a human to control in 3D space

while receiving only 2D visual feedback from a fluoroscope.

If the robotic manipulator holds the base of the flexible tool as opposed to a rigid tool

such as the one presented in the previous chapter, it creates kinematic redundancies.

An appropriate solution will satisfy other qualitative and quantitative requirements

such as reducing the potential for additional tissue trauma at the entry point, main-

taining a smooth motion with minimal redundant movements, and ensuring the tool’s

deformation is reduced minimize the risk of snapping motions and improve track-

ing accuracy. When objectives like these are at odds, there often exists no global
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Figure 4.1: Overview of the proposed system, the flexible nephroscope is inserted into the
kidney through the patient’s back, the other end of the tool is attached to the end-effector
of the robot arm which controls its position and orientation.

optimum between them and a compromise is necessary. This can be achieved by a

multi-objective optimization algorithm, which creates multiple solutions for the tool

position and orientation that are biased towards each objective to varying degrees.

This chapter proposes to use the NSGA-II algorithm presented in the previous chapter

in combination with a flexible tool model to follow a predefined path during robot-

aided PCNL. Given a desired tip trajectory, the multi-objective algorithm, described

in Sec. 4.1, uses the forward solution to the tool bending model (Sec. 4.2) to calculate

different positions and orientations of the end-effector that minimize four objective

functions, namely (1) tissue displacement, (2) end-effector displacement, (3) variations

in tool strain energy, and (4) tooltip placement error. The optimizer provides a variety

of solutions to the steering problem, allowing the operator to choose from a set of

results giving them the ability to determine the trade-off between objectives. This

is different from Chapter 2 as the multi-objective optimizer is used in place of an

inverse solution to the tool-bending model.

The results of the trajectory tracking algorithm are validated through simulation and

79



experiments performed on ex-vivo porcine tissue, these are described in Sec. 4.4. The

25 physical experiments reported in Sec. 4.4.2 show an average trajectory tracking

error of 2.03 mm during all trials. Finally, Sec. 4.5 discusses the general performance

of the proposed framework.

4.1 Modelling Tool Bending during PCNL through

Minimum Potential Energy

Accurately modelling the tool/tissue interaction has been the focus of extensive re-

search in areas such as needle steering [103]. A nonholonomic model was used

in [104–106] to reduce needle deflection during insertion. Similarly, in [107] the deflec-

tion of a needle is predicted primarily based on the characteristics of the tissue using

the Rayleigh–Ritz method and a multilayer tissue model to estimate tool deflection.

The authors in [108] use a combination of a biomechanics-based model, optimal ro-

tation control, and online curvature estimation to steer a needle. Rayleigh-Ritz is a

method of closely approximating the eigenvalues of a system using a direct numer-

ical method. In the case of tool bending the eigenvalues are also known as modal

coordinates and are needed to predict the bending of the tool.

It is clear that tool bending can have a negative impact on any surgical task, kidney

access during PCNL is no exception. Accurately modelling the tool bending is integral

to the safety and success of PCNL. To that end, the tool is modelled as a cantilever

beam, similar to the model used in [109], with one end clamped to the robot end-

effector and the other end free. The following formulation demonstrates this method

in 2D, which will be expanded to 3D in future work. The formulation considers three

assumptions:

• Assumption 1, the system is quasi-static model therefore mass and friction

forces are neglected;

• Assumption 2, axial deformation along the tool axis is neglected;
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• Assumption 3, tissue does not deform axially.

These assumptions hold true for the portions of the PCNL procedure considered here,

additionally the tool does not undergo an axial load during standard PCNL. Since

velocity and acceleration are both kept relatively low they have minimal impact on

the tool model, thus, allowing a quasi static model to be employed.

The bending of the tool is given as the weighted sum of n vibration modes. This modal

model determines the tool bending and tissue compression simultaneously through

minimum potential energy without having to explicitly model the distributed load.

The vibration modes are the first n mode shapes of free vibration for a cantilever

beam with one fixed and one free end. The boundary conditions of the beam must be

satisfied by trial beam deflection functions, i.e., eigenfunctions that represent the first

n vibration modes of the beam [109, 110]. Additionally, the eigenfunctions must be

differentiable up to the highest order of the partial differential equations of the beam;

thus ensuring a numerical solution. The beam deflection ν(d, z) at a given insertion

depth d and shaft location z is given by [103,109]:

ν (d, z) =
n∑
i=1

qi(z)gi(d), (4.1)

where qi(z) is the displacement induced by the ith vibration mode and gi(d) is the

weight d, i.e., the modal coordinates. If L is the length of the beam, the eigenfunctions

qi(z) can be normalized such that the maximum deflection is equal to unity and is

given by [111]:

qi(z) = 1
ki

[
sin

(
βi
z

L

)
− sinh

(
βi
z

L

)
− γi

(
cos

(
βi
z

L

)
− cosh

(
βi
z

L

))]
, (4.2)

with the constant γi defined as:

γi = sin βi + sinh βi
cos βi + cosh βi

, (4.3)
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Figure 4.2: Tool bending vibration modes. The horizontal axis is the tool’s axis, the dashed
gray lines are the first four vibration modes of the beam, and the solid black line is an
example of the weighted sum of vibration modes.

and the constant ki computed by:

ki = sin βi − sinh βi − γi (cos βi − cosh βi) . (4.4)

The constants βi are given in [111] for a cantilever beam as β1 = 1.875, β2 = 4.694,

β3 = 7.855, β4 = 10.996 and βi ' π (i− 0.5)∀ i > 4, thus allowing (4.3) and (4.4)

to be evaluated numerically. The summation in (4.1) is shown in Fig. 4.2, where the

dashed and dotted lines represent the first 3 vibration modes of the beam and the

solid black line is a weighted sum of the deflection functions. The modal coordinates

are unknown and must be determined at each tool pose. The approximate beam

deflection is now fully described by the above equations with the exception of the

weights gi(d), which will be determined in the following section.

4.1.1 System Energy Equilibrium

During PCNL, a rigid sheath is placed in an incision made in the patient’s back, the

nephroscope is then inserted through the sheath and into the kidney. The nephroscope

is constrained by the sheath, however, it is considered free within the kidney, see Fig.

4.1. When the flexible tool is inserted through the tissue and is given a linear or

angular displacement from the original entry path, the tissue compresses due to the

force/torque from the tool, which in turn causes it to bend as well. This interaction

is shown in Fig. 4.3.

The modal coordinates in (4.1) can be determined by minimizing the energy in the
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Figure 4.3: The displacement s(d, z) between the tool axis and the original entry path
is shown on the right. The angle θ describes the angular offset of the tool relative to
the horizontal. A depth z along the tool axis gives PI as the corresponding point along
the original entry path, PJ as the corresponding location of the tool axis, and PK as the
location of the deformed tool, all three points are given relative to the base reference frame.
The tool axis coincides with the undeformed tool, z1 and z2 are the z displacements along
the tool axis for the entry and exit locations respectively.

system [109]. This takes into account the work done by an input force or torque, which

causes the tool to bend, hence the tool/tissue interaction is a coupled effect and they

must be solved concurrently. Equilibrium is attained by adding the energy stored in

the tool due to it bending to the energy or work created by the tissue compression.

To begin, the total energy within the tool/tissue model is:

Π (d) = Ud (d) + Ut (d) (4.5)

where Ut(d) is energy stored in the tissue due to compression and Ud(d) is the energy

stored within the tool due to bending, which can be described by:

Ud (d) = 1
2

∫ L

0
EI(z)

(
∂2ν(d, z)
∂z2

)2

dz, (4.6)

where E is the tool’s Young’s modulus of elasticity, I is the second moment of inertia

of the beam about its longitudinal axis, and ∂2

∂z2 denotes the second derivative with
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respect to z.

Accounting for the rigid sheath in this formulation requires changing the flexural

rigidity of the tool, hereafter denoted by EI(z), so the tool does not bend within the

sheath. These values are changed when the depth z is between the start z1 and end

z2 of the sheath. Thus, the flexural rigidity is:

EI(z) =


EsIs if z1 ≤ z ≤ z2

EtoolItool otherwise,
(4.7)

where Is and Es as well as Itool and Etool are determined based on the geometry and

characteristics of the sheath and tool, respectively with Is ≈ Itool and Es >> Etool.

The potential energy due to tissue compression Ut(d) is slightly more complex. Tissue

displacement is given relative to a base frame while the tool has a separate coordinate

frame. The two frames need to be related to properly describe the tissue compression.

4.1.2 Tissue Potential Energy Calculation

The tool thus far has been described relative to its own reference frame, i.e., the

robot’s end-effector. The tissue location, on the other hand, is described relative to a

base reference frame, i.e., the robot’s base frame. Any coordinates or other variables

will be denoted with the superscript ()0 or ()t if given relative to the base or tool

frame, respectively. Fig. 4.4 demonstrates the conversion of reference frames for a

point P t
1. Since the position and orientation of the tool need to be found relative to

the base frame, it is most efficient to describe all points relative to the base frame.

Consider a point P t
1 given relative to the tool reference frame as P t

1 =
[
zt1 v

t
1

]T
, where

()T denotes the transpose, zt1 is a displacement along the tool’s axis, and vt1 refers to

a displacement perpendicular to the tool’s axis as in Fig. 4.4. In order to translate P t
1

to the base frame, the position [x0
t y

0
t ]
T and orientation θ1 of the end-effector need to

be known, along with θ2 the mounting angle of the tool to the end-effector (see Fig.

4.4). If θ = θ1 + θ2, then the coordinates of P 0
1 relative to the robot’s base reference
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Figure 4.4: Translation of a point from tool frame to the base frame. θ2 is the mounting
angle between the end-effector and the tool, θ1 is the orientation of the end-effector, zt1 is the
displacement of a point along the tool axis, νt1 is the displacement of a point perpendicular
to the tool i.e., the deflection described in (4.1), and x0

t , y0
t are the coordinates of the tool

frame.

frame as:

P 0
1 =

x0
1

y0
1

 =

x0
t + zt1 cos θ + vt1 sin θ

y0
t + zt1 sin θ − vt1 cos θ

 (4.8)

The tissue displacement for a point along the tool z1 ≤ z ≤ z2 is calculated as

s(d, z) − sin θν(d, z), where ν(d, z) is the tool deflection and s(d, z) is the distance

between the original entry path and the tool axis, i.e., the tissue displacement from

the original entry path to the tool axis is

s(d, z) =


(z cos θ + xt − xOP (z)) if z1 ≤ z ≤ z2

0 otherwise.
(4.9)

in which xOP (z) represents the x coordinate of the entry path at the specified point

z along the tool shaft. See Fig. 4.3.

Finally, the potential energy stored in the tissue is:

Ut(d) = 1
2K

∫ z2

z1
(s(d, z)− sin θν(d, z))2 dz, (4.10)

where K is the stiffness of the tissue, and θ is the angular offset of the tool relative

to the horizontal axis of the base frame as shown in Fig. 4.3 and Fig. 4.4. This for-

mulation assumes that the tissue is homogeneous, heterogeneous tissue formulations
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can be explored further in future work.

4.1.3 Minimizing Potential Energy through Modal Coordi-

nates

The modal coordinates in (4.1) can now be determined through the Rayleigh-Ritz

method. This method is a way of approximating the eigenvalues of a system directly,

in this case, it is applied to determine the modal coordinates. gi(d) must ensure that

δΠi (d) = 0, where the infinitesimal difference is given by δ. Therefore, in order to

minimize the energy within the system with unknown gi(d), the variation of Π(d) with

respect to gi(d) is set to zero by:

δΠi (d) = ∂

∂gi(d) (Ud(d) + Ut(d)) = 0. (4.11)

The potential energy from (4.6) can be inserted into the previous equation to give:

δΠi (d) = ∂

2 ∂gi(d)

∫ L

0
EI(z)

[
∂2

∂z2

n∑
i=1

qi(z)gi(d)
]2

dz

+K
∫ z2

z1

[
s(d, z)− sin θ

n∑
i=1

qi(z)gi(d)
]2

dz
 = 0.

(4.12)

The partial derivative can be taken with respect to gj(d), allowing the above to be

simplified to:

∫ L

0
EI(z)

(
n∑
i=1

q̈i(z)gi(d)
)
q̈j dz − K sin θ

∫ z2

z1
s(d, z)qj(z)dz

+ K sin2 θ
∫ z2

z1

(
n∑
i=1

qi(z)gi(d)
)
qj(z)dz = 0,

(4.13)

in which (¨) denotes the second derivative with respect to z. The first term can now
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be expanded and written as:

g1(d)
∫ L

0
EI(z)q̈j(z)q̈1(z)dz + g2(d)

∫ L

0
EI(z)q̈j(z)q̈2(z)dz

· · ·+ gn(d)
∫ L

0
EI(z)q̈j(z)q̈n(z)dz.

(4.14)

For simplicity, three new variables are created, i.e.:

φij =
∫ L

0
EI(z)q̈i(z)q̈j(z)dz, ωij =

∫ z2

z1
qi(z)qj(z)dz,

and ψi =
∫ z2

z1
s(d, z)qi(z)dz.

(4.15)

The above terms can be written in matrix form as a function of gi(d) since all terms

other than the weights can be numerically evaluated. When taking the partial deriva-

tive in (4.11), n equations with n unknown variables are created, that is the weights

gi(d). Thus, if the matrix M is full rank there exists a non-trivial solution for gi(d).

The matrix allows the system to be rewritten as:

M
[
g1(d), g2(d), · · · , gn(d)

]T
= K sin θ

[
ψ1, ψ2, · · · , ψi

]T
.

If µij = φij +K sin2 θωij,

M =



µ11 µ12 · · · µ1n

µ21 µ22 · · · µ2n
... ... . . . ...

µn1 µn2 · · · µnn


, (4.16)

which gives the solution to the modal coordinates gi(d) through:



g1(d)

g2(d)
...

gn(d)


= M−1


K sin θ



ψ1

ψ2
...

ψi




, (4.17)

87



where M−1 denotes the inverse of matrix M .

Now that the deflected tool shape can be found, the position and orientation of the

end-effector need to be determined to reach a desired tooltip position. This is an

ill-posed problem making the analytical solution nonviable. To find a set of viable

solutions, a multi-objective optimization method is implemented to take into account

various objective functions.

4.2 Multi-Objective Trajectory Tracking

To determine a solution for the position and orientation of the end-effector, multiple

factors need to be considered. Some of these factors may negatively impact one

another requiring a trade-off between them. For these types of problems, multi-

objective optimization is utilized. The algorithm finds solutions that satisfy each of

the objectives; it returns a set of solutions that optimizes each objective to a varying

degree - in multi-objective optimization, these are the non-dominated solutions i.e.,

the Pareto front. From the solution set returned by the optimizer, the user has

the ability to determine an acceptable trade-off when selecting a solution. Multi-

objective optimizers consider each objective separately rather than a weighted sum of

the objectives. The task at hand is to find the Pareto optimal solutions, such that

the solutions can be scrutinized and selected for execution.

4.2.1 Objective Functions during Trajectory Tracking

A reference trajectory is discretized as a collection of n points, equally spaced along

its length. Let index 1 ≤ i ≤ n denote the ith point along the trajectory. Four cost

functions are now defined as:

Minimize tooltip error: Minimize the error of tooltip position and goal position

along the trajectory. Consider the reference position to be P 0
G(i) and the estimated

tooltip position to be P 0
E(i). The Euclidean distance between them is used to deter-
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mine the fitness as

f1 =
√∑

[P 0
G(i)−P 0

E(i)]2. (4.18)

Minimize robot end-effector displacement. This will reduce the motion of the

robot end-effector and as a result the motion of the tool, thereby ensuring that the

algorithm has a preference for poses that are close to the previous pose of the robot.

The robot’s end-effector position at the instant i can be described with P 0
t (i), and

the difference between its current position and the previous position is given as:

f2 =
√∑

(P 0
t (i)− P 0

t (i− 1))2
, (4.19)

which should minimize the overall motion of the end-effector with the desired goal of

minimizing erratic or unnecessary motion of the tool when following the desired path.

Minimize changes in the tool strain energy. While the tool is meant to bend

slightly, the purpose of this cost function is to avoid sudden changes in the tool deflec-

tion to maintain stability and avoid snapping motions. Let the third cost function be

the difference in tool potential energy from its previous position to its current position

f3 = Ud(di)− Ud(di−1) (4.20)

where the tool strain energy Ud(d) is defined in (4.6).

Minimize energy stored in the tissue. This cost function minimizes tissue dis-

placement along the entry point in the tissue, i.e., by minimizing the energy stored in

the tissue due to compression as defined in (4.10). Thus:

f4 = Ut(di). (4.21)

This cost function can reduce potential tissue trauma by limiting the extent to which

it undergoes deformations.

The NSGA-II from Chapter 3 can now be used to return the optimal end-effector
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Table 4.1: NSGA II trajectory tracking variable bounds

Unit Minimum Maximum
x0
t mm -100 100
y0
t mm 100 350
θ deg -150 -30

position and orientation for the robot that minimizes the cost functions described

above. Each point along the trajectory is optimized separately, meaning a separate

population is generated for each point along the trajectory. The tool pose and orien-

tation are determined for the first point along the trajectory with the optimizer, then

the process is repeated for each subsequent point until the end of the path is reached.

To determine the necessary tool position and orientation the following parameters are

used in NSGA-II. The initial population is comprised of 100 members, each member

contains three variables: the position coordinates of the end-effector x0
t , y0

t , and θ as

described in the previous section and shown in Fig. 4.4. The parameters are initialized

randomly between boundary values provided in Table 4.1.

Each of the cost functions is evaluated for each individual of the population. The

fitness of each individual influences the subsequent population generated. To identify

the impact of each cost function and its necessity they are evaluated through a set of

simulations.

4.3 Simulation Results

To validate the proposed framework, several simulations are performed to justify the

necessity of each cost function described in Sec 4.2. Each simulation is performed

once on a target trajectory defined as a straight line inside the tissue with a length of

40 mm. The following tool parameters are used: L = 231.8 mm, Etool = 3.2 GPa, and

Itool = 25.2549 mm4. The tissue stiffness is K = 27.5 kPa, which is the same stiffness

used for the physical experiments (the procedure for determining this value is given

in the following section). Four different scenarios are considered:
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Table 4.2: Mean and standard deviation for each cost function for simulations 1 through 4.
Light grey indicates cost functions being used in the optimizer.

Case f1 [µm] f2[mm] f3 [mJ ] f4 [mJ ]
1 2.92± 1.64 14.0± 21.4 55.2± 115 1230± 2860
2 8.50± 4.24 4.34± 10.7 0.48± 0.33 9.27± 6.01
3 36.9± 47.2 4.76± 10.5 2.29± 5.37 41.2± 94.4
4 30.7± 57.1 3.88± 8.81 1.01± 4.77 17.4± 78.1

Simulation 1: The only cost function considered in the optimizer is the tooltip error

f1 defined in (4.18). This cost function is necessary to have the tool follow a desired

path.

Simulation 2: The only cost functions considered are the tooltip error f1 defined in

(4.18) and the tissue compression f4 defined (4.21). The effects of adding the tissue

compression should be evident when compared to the previous trial.

Simulation 3: Here three cost functions are considered, i.e., the tooltip error f1

(4.18), the tissue compression f4 (4.21), and the tool strain energy f3 (4.20).

Simulation 4: Here all four cost functions f1, f2, f3, and f4 are implemented in the

optimizer concurrently.

Simulations are performed using an Intel i7 processor, 64 GB of RAM and GeForce

RTX 2080 GPU. The results in Fig. 4.5 depicts the deformed tool shape for each pose

along the executed trajectory. The figure portrays the effect of each cost function on

the tool pose. The tool poses from simulation 1 are erratic and present alternating

motion between poses. Simulations 2 and 3 have results similar to each other, how-

ever, their tool poses are significantly less erratic compared to simulation 1 since f4

constrains the original entry path. Finally, the inclusion of f2 in simulation 4 results

in the least erratic tool base position, with tool poses creating a smooth tool motion.

The mean and standard deviation of the cost functions for the selected results of

the 4 simulation trials are shown in Table 4.2. The tool poses are selected for each

point along the path from the final Pareto optimal sets returned by the optimizer,

the population member with the lowest tooltip error is selected as the best solution.
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Figure 4.5: Simulation results demonstrating the effect of each cost function. The grey
rectangles represent the tissue and the solid white line represents the original path through
the tissue. Each tool pose along the trajectory is shown, green represents the first pose
and each pose becomes more blue towards the end. Circles represent the position of the
robot end-effector which generally moves from right to left (green to blue respectively) as
the trajectory moves in the opposite direction.

The results show that there is a large difference between simulations 1 and 2 in tissue

compression. This indicates that the cost function f4 ensures that the tool passes

more directly through the original path through the tissue, thereby reducing the po-

tential for tissue damage. When considering simulation 3, Table 4.2 shows a slight

increase in strain energy, i.e., f3, for simulation 3 when compared to 2, however, it is

still an improvement on simulation 1. Finally, simulation 4 includes f2 which aims to

minimize the movement of the tool base. This cost function appears to be effective

in reducing the overall motion of the end-effector; thereby reducing unnecessary jerk

or other undesirable motions.

4.4 Experimental Results

The experimental setup used to validate the proposed method again uses the 6-DOF

(degree of freedom) robotic arm (Meca 500, Mecademic, Montréal, Canada), and an
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Figure 4.6: The experimental setup showing the robotic arm (1) with the tool attached at
the end-effector, the porcine tissue sample (2), the electromagnetic tracking system (3), the
acrylic tool with embedded sensor (4), and the robot base frame (5).

electromagnetic tool tracking system (Aurora, Northern Digital, Waterloo, Canada)

as pictured in Fig 4.6. The experiments were performed on ex-vivo porcine tissue that

included the skin, layers of muscle and fat, and connective tissue. The electromagnetic

tracking system uses a small sensor embedded in the tip of the tool, the other end of

which is attached to the robot end-effector. Due to potential eddy currents interfering

with the electromagnetic tracking system, the tool is a 231.8 mm acrylic rod with a

3.2 GPa Young’s modulus and 2.38 mm radius. The flexible acrylic rod demonstrates

the capability of the proposed formulation to enable the use of more flexible tools in

the future with a semi-autonomous platform. All of the experiments begin with the

tool already inserted through a straight entry path in the tissue. The tissue is kept

stationary during each trial while the robot manoeuvres the tool along the trajectory.

The sensor is within the electromagnetic field it returns the 3D tip coordinates with

an approximate accuracy of 0.70 mm, at a frequency of 14.7 Hz.

Three pre-defined tooltip trajectories are created to induce both translation and rota-

tion of the tool’s base, as shown in Fig. 4.7(a). The trajectories are expressed relative
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Table 4.3: Mean and standard deviation of tip error in mm

Tissue Depth Trajectory 1 Trajectory 2 Trajectory 3
20 mm 1.21± 1.06 1.28± 1.03 2.45± 1.30
35 mm 2.23± 0.94 2.97± 0.73 -

to the robot’s base, located at x = 0 and y = 0. The tissue is 120 mm above the

robot’s base, and the trajectories are on average 50 mm below the tissue. The robot’s

end-effector starts at position x = 0 and y = 280 mm. Two different porcine tissue

samples having different thicknesses of 20 and 35 mm are used. For each tissue and

trajectory, a total of five trials are performed, thus there are 5 experimental scenarios

and 25 trials in total.

For each experimental scenario, the optimizer determines the corresponding robot’s

end-effector position and orientation according to the four cost functions defined ear-

lier. The robot is then controlled to follow the calculated end-effector position while

the tooltip position is measured.

4.4.1 Model Identification

The flexural rigidity of the tool and sheath are known. The tissue stiffnessK, however,

must be determined prior to experiments. To this end, the tool is inserted into the

tissue initially without the sheath present, the robot end-effector is controlled to

follow a predefined straight line while the electromagnetic tracking system collects 3D

tip position information. The measured robot end-effector trajectory is input to the

tool-bending model. The tooltip position is calculated for a range of potential tissue

stiffnesses and compared with the experimental results. The stiffness value yielding

the lowest least square error between the model and measured tip positions is selected.

The obtained stiffness value is K = 27.5 kPa.

4.4.2 Experimental Results

The error between simulated and measured tooltip positions is calculated for each

point along the trajectory. Table 4.3 summarizes the mean error and standard devi-
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Figure 4.7: The trajectories used are shown in (a), trajectory 1 is red, trajectory 2 is green,
and trajectory 3 is blue. The measured tooltip positions are plotted in (b). The error
for each trial of each trajectory is shown in (c), red lines indicate trajectory 1, green for
trajectory 2, and blue for trajectory 3. Note that the x-axes have been aligned in (c) to
better show the results since each trajectory spans 40 mm.

ation for each experimental scenario. Note that out-of-plane error is neglected since

a 2D scenario is being considered, it is presumed that a 3D scenario would have a

slightly higher error rate due to the increased dimensionality. The results are consis-

tent across trials with an overall mean error of 2.03 mm. Based on the error for each

point along the trajectories, as Fig. 4.7 shows, the framework is most accurate close

to the entry point, the error appears to increase as the distance between the tooltip

and the original entry point increases.
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4.5 Conclusion and Discussion

Proposed in this chapter is a model-based multi-objective optimizer used to predict

the bending of the nephroscope. The optimizer aims to minimize four cost functions

to accurately trace the predefined trajectory.

Four simulation scenarios are used to validate the purpose of each cost function for

the multi-objective optimizer. It is found that the tissue displacement and the tool

strain energy are highly correlated, however, both are necessary to accurately trace

the trajectory. The 25 experiments performed on samples of porcine tissue show an

average tracking error of 2.03 mm with a standard deviation of 1.23 mm. Furthermore,

the tracking error tends to increase with tissue thickness, the error also increased

with the distance from the entry path. Overall the results indicate that the proposed

framework can accurately trace a predefined path with minimal error.
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Chapter 5

Conclusions and Recommendations
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GAINING kidney access is one of the most challenging components of PCNL

(percutaneous nephrolithotomy) and is integral to patient outcomes. Incor-

rect tool steering when gaining kidney access is the leading cause of many complica-

tions related to PCNL. This thesis proposed robotic assistance to both teach novice

surgeons and to provide assistance during PCNL through sub-task automation. First,

haptic assistance and subtask automation are implemented to help simplify the pro-

cedure while training novices. The haptic assistance is derived from an expert demon-

stration. A novel inverse kinematic formulation is used to create a remote centre of

motion (RCM) at the entry point in the tissue, which simplifies the task of controlling

the tool such that the surgeon only controls the 3D tooltip position. Additionally,

this allows a 6 degree of freedom (DOF) robotic arm to be controlled by a 3 DOF

haptic device. Through a set of evaluation criteria, the effectiveness of training with

the haptic feedback is demonstrated. Users are able to achieve better results when

the haptic feedback is applied, and once haptic feedback is removed, those trained

with haptic feedback perform better than those who never experienced the haptic

feedback.

While the ideal path for applying haptic feedback is based on an expert demonstration,

this approach may not be the most suitable in an autonomous scenario. To that end, a

multi-objective optimizer (NSGA-II) is applied to plan a variety of appropriate paths

for the robotic agent to follow. The algorithm considers four objective functions:

path length, tissue displacement, obstacle proximity, and path smoothness. Each

objective is used specifically for gaining kidney access during PCNL. The algorithm

aims to minimize the overall path length since longer paths require longer procedure

times and more tool movement puts the patient at increased risks. Minimizing tissue

displacement reduces the risk for tissue trauma at the entry point; tissue trauma at

the entry point can lead to additional bleeding and infection. Maximizing the distance

to obstacles ensures a collision-free execution of the algorithm, further ensuring that

there is no additional tissue trauma during the procedure. Finally, minimizing the

path smoothness parameter ensures that there are no sudden movements or jerks

during the procedure. This algorithm is able to provide an ideal set of paths from
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which the expert surgeon can select one for execution. This optimization method

keeps a surgeon in control of the trade-offs that the various final solutions offer, for

example: since all of the path lengths are minimized and may only vary slightly in

their final length, this may not be as important of a factor for the surgeon when

selecting the final path. The surgeon may choose to select a path that provides the

least tissue displacement or maintains the furthest distance from obstacles.

With an appropriate path planned, a robot agent can autonomously execute the

task of gaining kidney access. Although, an additional challenge to consider when

performing this task autonomously is accurately tracking the trajectory of the tool.

This problem can be further complicated by tool bending that may occur as a result

of its interaction with the tissue at the entry point. A tool/tissue interaction model

is then developed to accurately determine the bending of the tool for a given position

and orientation of the base. The tool is modelled as a cantilever beam with one fixed

and one free end, and the bending of the tool can be described by a weighted sum

of the vibration modes. Conversely, the exact displacement of the tissue is unknown

without the tool bending, thus it is modelled as a function of the tool displacement.

These two models are combined as potential energy functions. The weights, or modal

coordinates, for the tool bending, are determined by minimizing the energy in the

system. This formulation was evaluated on a set of simulations which demonstrated

that while some of the cost functions may have similar effects on the path planning

all four cost functions need to be implemented to ensure patient safety and accurate

trajectory tracking. Then NSGA-II is used to find suitable tool poses that account for

the bending such that the tip follows predefined trajectories. Physical experiments

demonstrated the accuracy of this model for a real-world scenario.

Each of the above contributions aim to provide robotic assistance to PCNL, partic-

ularly while gaining access to kidney stones. Their effectiveness has been thoroughly

evaluated through experiments. The inverse kinematics, from Chapter 2, success-

fully decoupled orientation from position, while haptic feedback proved to be an ex-

cellent addition when teaching novices. Nevertheless, the proposed framework can be
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improved, specifically regarding the visual feedback.

The cyber-physical simulator proposed in Chapter 2 does not recreate the visual

feedback that would be provided in an operating room. The phantom kidney used

during the experiments gives users a full visual view of both the outside and inside

of the kidney, except when they were entering the kidney. During PCNL, there is

generally only 2D image feedback from a fluoroscope or ultrasound machine. Future

work should focus on limiting the visual information to ultrasound and incorporating

a semi-autonomous visual servoing system. This semi-autonomous addition to the

framework could further reduce the physical and mental workload on a novice by

automating control of the ultrasound probe.

Another improvement can be sought by integrating the proposed framework into Mar-

ion Surgical’s K181 PCNL surgical simulator [26]. The simulator is able to generate

accurate scenarios based on individual patient’s preoperative imaging. These scenar-

ios will allow expert surgeons to create the optimal trajectory in the simulator. The

trajectory is then be used to create the force feedback to guide a novice and teach

them how to perform the procedure on the patient. Expert surgeons would be able

to mentor and teach novices remotely through the simulators.

Semi-autonomous visual servoing would also provide additional feedback on kidney

stone locations and could be implemented to further improve tool tracking during

the procedure. The ultrasound image information could be incorporated to adjust

the accuracy of the tool bending mode. By providing online tooltip tracking, the

tool bending model parameters could be updated and used to adjust the tool pose to

maintain accurate tool positioning.

The tool/tissue interaction model demonstrated accurate tooltip tracking for 2D sce-

narios. A key aspect of future work should replace the tool bending model with a

compatible 3D version. Other than the tool bending model, the remaining formula-

tion of the tool/tissue interaction model can be converted to a 3-dimensional scenario

with minimal adjustments. The 3D formulation is expected to have a slightly higher

absolute error as a result of possible deflection in an additional direction. The 3D
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tool/tissue interaction model combined with semi-autonomous visual servoing is an-

ticipated to prove highly effective in accurate trajectory tracking and implementing

autonomous kidney access. This framework may also be implemented to additional

steps during the procedure since it allows a robotic agent to accurately execute a

carefully planned task.

Finally, possible complications during the procedure come from changes in the position

of the kidney or misalignment of the simulated patient position compared to the

patient’s position in the operating room. Further, patient breathing, other natural

phenomena, or the tool can displace the kidney during the procedure. Accounting

for these position errors is beneficial as it would further improve patient safety and

allow a robotic agent to account for the position errors in an online environment. The

optimal trajectory would be adjusted based on visual feedback from ultrasound images

to potentially realign the trajectory to the new target position. The visual feedback

could also be used to adjust for other position errors within the kidney or caused

by breathing. Making small online adjustments to an optimal path would improve

autonomous tool steering during PCNL and simplifies the challenges of accurately

aligning the kidney with the planned trajectory.

The semi-autonomous PCNL frameworks outlined in this thesis provide a variety of

possible improvements for both training and live scenarios. Combining this frame-

work with the possible advancements identified in this thesis, could vastly improve the

outcomes from PCNL by providing additional training opportunities and automating

subtasks during the procedure. This simplifies the mental and physical workload on

the surgeon and is capable of ensuring a safe and accurate procedure. The addi-

tion of the tool bending model allows smaller more flexible tools to be used during

autonomous PCNL. Narrower tools have been demonstrated to reduce bleeding and

tissue damage since they require smaller incisions and are less likely to puncture larger

veins or arteries. These improvements can one day lead to a fully autonomous kidney

stone removal system, which has the potential to greatly improve the outcomes of

percutaneous nephrolithotomy.
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